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Preface 
Multilayer optical coatings are successfully employed in various fields, such as optical 

and scientific instrumentation manufacturing, astronomy, spectroscopy, medicine, etc. A great 

number of laboratories and experts are involved in designing and manufacturing modern optical 

coatings. At present, in order to receive best results one needs to be aware of all aspects of design 

and production of multilayer optical coatings. The goal of this book is to provide a comprehen-

sive outlook on modern problems in multilayer optics. A characteristic feature of the book is an 

attempt to make it useful for a wide range of experts from specialists of practical applications to 

specialists elaborating the theory of thin film coatings. 
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Chapter 1 

SPECTRAL 
CHARACTERISTICS OF 
MULTILAYER COATINGS: 
THEORY 

1.1 Electromagnetic field in layered media; spectral characteristics 
of layered media 
 

It is essential to begin the section with deriving layered medium field equations from the 

Maxwell equations as sometimes errors occur in calculating due to an inconsistent use of some 

final formulas. It is evident from the following that a change of the sign in the time exponential 

factor results in the change of all values for complex conjugates. Misunderstanding is sometimes 

caused by the fact that different authors use formulas obtained with different choice of the time 

exponential factor. Also, introducing the reflectance through a magnetic or an electric field 

results in different signs in the final reflectance formulas. Knowledge of the principal steps in 

deriving formulas helps to eliminate possible error. 

 
1.1.1 Layered medium electromagnetic field equations 
 

Fig. 1.1 presents the basic physical model dealt with in studying multilayer optical 

coatings. Two homogeneous semi-infinite isotropic media are separated by a set of plane parallel 

isotropic layers, non-limited in either directions, whose permittivity and conductivity depend on 

one spatial coordinate perpendicular to the boundary between layers and media. A plane 

electromagnetic wave incites from the first medium to the boundary. This causes a plane 

reflected wave in the first medium and a plane transmitted wave in the second one. 
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Fig. 1.1. Multilayer optical coating model. 

 

The given model adequately describes multilayer coatings as the width of the coating 

always exceeds many times the wavelength of the incident wave and the total thickness of the 

coating. Further, we consider these both media and the layers non-magnetic (magnetic 

permeability is equal to 1 ) and assume an absence of volume charges, both assumptions are 

quite standard in the multilayer optics. These assumptions admitted, the Maxwell equations in 

the medium are as follows: 

1 4,        H EE H E
c t c t c

ε πσ∂ ∂
∇× = − ∇× = +

∂ ∂

 

  

 .                                (1.1.1) 

Here E


 is an electric vector, H


 is a magnetic vector, ε  is permittivity, σ  is electrical 

conductivity, c  is the velocity of light. 

The ,  E H
 

 field satisfies the equations (1.1.1) at the ε  and σ  continuity points. At the ε  

and σ  discretion points, i.e., at the boundaries between the layers E


 and H


 tangential 

components ought to be continuous. A study of the field in a layered medium, in effect, comes 

down to the solution of equation (1 .1 .1 ) with specified boundary conditions when the field is 

excited by an incident plane wave. 

Let us denote the space variable, perpendicular to the boundary of layers, as z  and direct 

the z  axis outwardly, to where the incident wave (Fig. 1.1) comes from. Let the incident wave 
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be a plane monochromatic ω -frequency wave. Let us assume a time dependence of the field be 

exp( )i tω  1 and hold 

exp( ),        exp( )E i t H i tω ω= =E H
   

. 

Here vectors E


 and H


 depend only on the spatial variables. 

Substituting these expressions into (1.1.1) and further reducing by exp( )i tω  exponential 

factor, we obtain 

4,        i i
c c c
ω ω πσε∇× = − ∇× = +E H H E E

    

.                              (1.1.2) 

Typically the wavelength of incident wave in vacuum is used as a spectral parameter 

characterizing a monochromatic wave: 

2 cπλ
ω

= . 

Another convenient spectral parameter is the wavenumber of the incident wave in 

vacuum /k cω= , related to the wavelength by the equation: 

2k π
λ

= . 

It is also convenient for further use to introduce a complex permittivity of the medium 
defined as 

4i
c
πσε ε= − . 

In conformity with the previously arranged direction of the z -axis, the complex 

permittivity turns to be a function of a variable z . Taking into account the above assignations, 

equations (1.1.2) will take the following form: 

,        ( )ik ik zε∇× = − ∇× =E H H E
   

  .                                (1.1.3) 

Let us decompose the electromagnetic field of the wave into two components, the first 

being the S-component, with the electric vector perpendicular to the incidence plane, the other 

one, the P-component, featuring the plane-parallel electric vector. Let us select a coordinate 

system so that the x -axis be perpendicular to the plane of incidence and the y -axis be in this 

plane. 

 
1 This selection of the time factor gives the sign of the imaginary part of the complex refractive index most frequently used in 
multilayer optics; it will feature the negative sign. As is seen from below, the change of the sign before i tω  is equivalent to the 
substitute of the complex values obtained below for the complex conjugates. Note, that in a number of studies, including the 
widely known book "Principles of Optics” by M. Born and E. Wolf, the exponential factor takes the form of exp( )i tω− ). So the 
complex refractive index in that book has a positive imaginary part. 
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Let us denote the angle of incidence as aγ , the permittivity of the outer space where the 

incident wave comes from as aε ; the permittivity of the second outer space, traditionally referred 

to as substrate, as Sε . Let us then consider equations for the S-component and the P-component 

of the field separately. 

 

The S-polarization case.   

In this case, the electric vector E


 has only one component xE  different from 0 . 

Fig. 1.2 shows the yz -cross-section of the layered structure in question. The x -axis is 

directed backwards, so the E


vector is perpendicular to the yz -plane, away from the observer. 

The scalar form of the vector equations (1.1.3) gives: 

0,        ,        x x
x y z

E EH ikH ikH
z y

∂ ∂
= = − =

∂ ∂
. 

( ) ,      0,         0.y yz z
x

H HH Hik z E
y z x x

ε
∂ ∂∂ ∂

− = = =
∂ ∂ ∂ ∂

                           (1.1.4) 

 

 
Fig. 1.2. Electric and magnetic vectors orientation in the S- and P-polarization cases. 

 

The first equation shows that the magnetic vector has only yH  and zH  components 

different from 0 . Thus, the magnetic vector lies in the yz -plane, i.e., in the incidence plane. It is 

an evidence of the crosswise field of the plane electromagnetic wave, with the electric, the 

magnetic and the wave vectors forming the right-hand triple. It follows from the two other 
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equations that the magnetic vector, hence, the electric vector, as well, depend only on y  and z . 

Substituting yH  and zH  from the second and third equations into the fourth one, we obtain: 

2 2
2

2 2 ( ) 0x x
x

E E k z E
y z

ε∂ ∂
+ + =

∂ ∂
 .                                            (1.1.5) 

Let us apply the variable separation method to the equation, in other words let us seek its 

solution in the form: 

( , ) ( ) ( )xE y z u z y= g . 

By substituting this expression into (1.1.5), dividing it by ( ) ( )u z yg and separating the 

variables, we obtain 
2 2

2
2 2

1 1 ( ) ( )
( ) ( )

d d u k z u z
y dy u z dz

ε
 

− = + 
 



g
g

.                                       (1.1.6) 

It follows from this equation that both its parts can depend neither on y  or on z  and, by 

this very fact, are equal to a certain constant value. This constant will be further determined from 

the condition of the field excitation by an incident plane wave. For the time being, it is 

convenient to assume it equal to 2 2k α ,  where k  is the wavenumber of the incident wave, and α  

value is undetermined so far. Then we obtain the following equation for the ( )yg  function from 

(1.1.6): 
2

2 2
2 ( ) 0d y

dy
α =

g+k g .                                                    (1.1.7) 

Let us select its solution in the following form: 

( ) exp( )y ik yα=g . 

This presentation does in no way affect its common character, as the numerical constant 

placed in a general case before the exponential, can be included into the ( )u z  function and the 

sign of α  has not yet been determined. So xE  is written down in the following form 

( , ) ( ) exp( )xE y z u z ik yα= . 

It follows from the second and third equations of the system (1.1.4) that yH  and zH  have 

a similar type of dependence on y . Then, we obtain from the third equation the following: 

( , ) ( ) exp( )zH y z u z ik yα α= . 

Assume 
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( , ) ( ) exp( )yH y z z ik yα= −v . 

Thus, the vector functions E


 and H


 are written down as 

{ }
{ }

( ),0,0 exp( ),

0, ( ), ( ) exp( ).

u z ik y

z u z ik y

α

α α

=

= −

E

H





v
                                       (1.1.8) 

Here the first, the third, the fifth and the sixth equations of the system (1.1.4) are 

satisfied. The remaining two equations provide a system for determining the ( )u z  and ( )zv  

functions. By substituting the above expressions for the field components into the equations and 

reducing them by exp( )ik yα , we obtain 

2,         ( ) .du dik ik z u
dz dz

ε α = = − 

vv                                    (1.1.9) 

The equations (1.1.9) are valid for the field at every continuity points of complex 

permittivity ( )zε , i.e., everywhere at the ε  and σ  continuity points. At the ε  and σ  discretion 

points, i.e., at the boundaries of the layers tangential components of the E


 and H


 ought to be 

continuous. The E


 and H


 tangential components are equal to ( ) exp( )u z ik yα  and 

( ) exp( )z ik yα−v .  Since the continuity conditions ought to be satisfied at the layer boundary at 

any y  value, it follows, then, that the y -dependence in any layer, in the outer space, and in the 

substrate is the same, while the ( )u z  and ( )zv  functions are continuous at the boundaries of 

layers. 

Let us now determine the constant α .  The field of the incident plane wave can be 

presented as 2 

exp( ).AE ikr i tω= − +E


 

  

Here AE


 is the field amplitude, k


 is the wave vector of the incident wave, r  is the 

coordinate vector of the observation point. 

In a homogeneous isotropic medium featuring aε  permittivity, the wave vector is equal 

to ak k lε=
 

, where l


 is a unit directing vector. Let the incident wave spread in the direction 

shown in Fig. 1.2. Then the directing vector is 

{ }0, sin , cosa al γ γ= − −


, 

 
2 The selection of the sign preceding ikr



  is determined by the selection of the sign before i tω . The plane of the constant 
phase ikr t constω− =



  spreads with time in the direction of the vector k


. 
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and the incident wave field depends on the coordinates in the following way: 

( )exp cos sin .A a a aE ik z y i tε γ γ ω = + + E
 

 

Hence, we obtain 

sina aα ε γ=  .                                                    (1.1.10) 

This equation represents the Snell law. Actually, α  is the same in all layers, the outer 

space, and the substrate. But in the latter sins sα ε γ=  and so 

sin sina a s sε γ ε γ=  .                                              (1.1.11) 

The Snell law (1.1.11) is valid also in case of absorbing substrate. In this case complex 

permittivity sε , should be substituted into (1.1.11) instead of sε .  The sγ  angle in this case will 

also be complex, which, in the physical sense implies a non-coincidence of the plane of the 

constant wave phase with that of the constant wave amplitude. 

 

The P-polarization case.   

Now the H


 vector has only xH  component different from zero, and the E


 vector has 

two yE  and zE  components. The vector equations (1.1.3) written in the scalar form give the 

following system of equations: 

,         0,         0,

0,         ( ) ,         ( ) .

y yz z
x

x x
x y z

E EE EikH
y z x x

H HE ik z E ik z E
z y

ε ε

∂ ∂∂ ∂
− = − = =

∂ ∂ ∂ ∂
∂ ∂

= = = −
∂ ∂

 

                     (1.1.12) 

Similar to the S-case, we establish that the field components depend only on y and z  and 

the y -dependence takes the form of exp( )ik yα . Let us represent xH  as 

( , ) ( ) exp( )xH y z z ik yα=v . 

From equations (1.1.12) it follows that 

( , ) ( ) exp( )
( )zE y z z ik y
z
α α
ε

= −


v . 

It is convenient to represent yE  as 

( , ) ( ) exp( )yE y z u z ik yα= . 

Thus, the E


, H


 electromagnetic field in the P-case is written down as 
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{ }

0, ( ), ( ) exp( ),
( )

( ),0,0 exp( ).

u z z ik y
z

z ik y

α α
ε

α

 
= − 
 

=

E

H







v

v
                                 (1.1.13) 

Substituting the field components into the first and the fifth equations of the system 

(1.1.12) and reducing it by exp( )ik yα , we obtain the equations for the unknown functions ( )u z  

and ( )zv  

2

1 ,         
( )

( ) .

du ik
dz z
d ik z u
dz

α
ε

ε

 
= − 

 

=





v

v
                                    (1.1.14) 

Like in the previous case, the equations are valid at ε  and σ  continuity points. At the 

boundaries of layers, the ( )u z  and ( )zv  functions continuity as well as the α  constancy follow 

from the continuity of the field tangential components. Constant α , as is easily seen, is still 

determined from the equation (1.1.10). 

We will regard equations (1.1.9)-(1.1.14) as principal relations describing the field in the 

layered medium. Field E


, H


 is determined from the solutions of these equations according to 

the formulas (1.1.8), (1.1.13). 

Note, that in case of normal incidence, i.e., when sin 0a aα ε γ= = , equations (1.1.9) 

and (1.1.14) for S- and P-components of the field coincide. 

 

1.1.2 Amplitude transmittance and reflectance of the layered medium 
 

Now let us try to obtain general expressions for the transmittance and reflectance of a 

layered medium. Here, we will again consider S- and P- polarization cases. 

The S-polarization case.   

Equations (1.1.9) are also valid for the outer space and the substrate. In the outer 

space ( ) azε ε≡  and from (1.1.9) we obtain a simplest second order equation for ( )u z : 

2
2 2

2 ( ) 0a
d u k u
dz

ε α+ − = .                                            (1.1.15) 

Assume 

2 cosa a a aq ε α ε γ= − = . 



13 

 

Equation (1.1.15) has two linearly independent solutions: exp( )aikq z−  and exp( )aikq z .  

Selecting exp( )i tω  as the time exponential factor, the first one corresponds to the wave 

spreading in the positive direction of the z -axis while the other one represents the negative 

direction of the wave propagation along the z -axis. So, for the selected coordinate system, 

dependence of the incident wave field on z  takes the form of exp( )aikq z , while the reflected 

wave field dependence looks as exp( )aikq z− . For the incident wave it follows from the first 

equation in (1.1.9) that aq u=v ,  while for the reflected wave we obtain aq u= −v .  

Let us designate the coordinate of the outer space boundary as az  and denote amplitudes 

of tangential components of the electric vector of the incident and reflected waves at this 

boundary as AE  and RE . Thus, for the incident wave 

( ) ,         ( ) .a A a a Au z E z q E= =v  

and for the reflected wave 

( ) ,         ( ) .a R a a Ru z E z q E= = −v  

Similarly, designating TE  the tangential component of the electric vector of the 

transmitted wave at the boundary with substrate we have 

(0) ,         (0) ,T s Tu E q E= =v  

where 

2 coss s s sq ε α ε γ= − = . 

Amplitude transmittance and reflectance are introduced for the S-component of the field 

as follows 

,         .T R

A A

E E
t r

E E
= =  

The amplitude coefficients do not change with proportional changes of the amplitudes of 

the incident, reflected and transmitted waves. So, the fields can be normalized with respect to the 

amplitude of the transmitted field. Then TE is equal to 1 . 

The equations (1.1.9) solutions do not only depend on z , but also on the wavenumber k . 

So, further we will take them down as ( , ),  ( , )u z k z kv  pointing out their dependence on the 

wavenumber k  as well as on the coordinate z . 
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The continuity of the u  and v  functions at the boundary with the substrate leads to the 

followings initial conditions for equations 

(0, ) 1,         (0, ) .su k k q= =v                                            (1.1.16) 

The field at the outer boundary of the layered media az  is the sum of the incident wave 

and the reflected wave fields. So, the continuity conditions for u  and v  at the outer space 

boundary and the above relations for the incident and the reflected fields amplitudes lead to: 

( , ) ,         ( , ) ( ).a A R a a A Ru z k E E z k q E E= + = −v  

These relations allow to express amplitudes of the incident and reflected fields through 

the solution of system (1.1.9) with the initial conditions (1.1.16): 

( , ) ( , ) ( , ) ( , )
,         .

2 2
a a a a a a

R A
a a

q u z k z k q u z k z k
E E

q q
− +

= =
v v

 

Note, these will be RE  and AE  values for 1TE = . This immediately leads to expressions 

for the amplitude transmittance and reflectance. They depend on the wavenumber k  and are 

determined from 

2 ( , ) ( , )
( ) ,         ( ) .

( , ) ( , ) ( , ) ( , )
a a a a

a a a a a a

q q u z k z k
t k r k

q u z k z k q u z k z k
−

= =
+ +

v
v v

                (1.1.17) 

Thus, normalizing the field with respect to the amplitude of transmitted wave allows to 

bring amplitude reflectance and transmittance calculations to finding the solution of the 

differential equations (1.1.9) with the initial conditions (1.1.16). We will discuss in detail the 

calculating aspects of the technique a little later. Meanwhile, we will consider the P-component 

of the field. 

 

The P-polarization case.   

From equations (1.1.14) for ( )u z  in the outer space we again obtain equation (1.1.15). 

So, in the P-case, similar considerations on dependence of the incident and the reflected waves 

on z  as in S-case are valid.  

So, for the incident wave 

( )2( ) exp au z ik zε α− . 

while for the reflected wave 

( )2( ) exp au z ik zε α− − . 
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Taking this into account, we obtain from the second equation of the system (1.1.14) that 

for the incident wave aq u=v ,  while for the reflected one aq u= −v ,  where the value aq  is now 

determined as 

2 cos
aa

a
aa

q
εε
γε α

= =
−

. 

Similarly, for the transmitted wave sq u=v ,  where 

2 cos
ss

s
ss

q
εε
γε α

= =
−

. 

Like in the S-case, we will determine the amplitude transmittance and reflectance through 

the amplitudes of the tangential components of the electric vector of the incident, reflected and 

transmitted waves AE , RE  and TE , respectively. In accordance with (1.1.13) and the equations 

connecting the u  and v  functions in the outer space and the substrate, we have for the incident 

wave 

( ) ,         ( ) ,a A a a Au z E z q E= =v  

for the reflected wave 

( ) ,         ( ) ,a R a a Ru z E z q E= = −v  

and for the transmitted wave 

(0) ,         (0) .T s Tu E q E= =v  

Let us again normalize the fields with respect to the transmitted wave amplitude, 

assuming 1TE = . Let ( , ),  ( , )u z k z kv  be solutions for system (1.1.14) in the layered medium. 

The u  and v  functions continuity at the boundary with substrate leads us to the initial conditions 

for system (1.1.14) in the form: 

(0, ) 1,         (0, ) ,su k k q= =v  

which looks like initial conditions (1.1.16). However, the value sq , is calculated from another 

formula for the P-case (see above). The continuity condition at the boundary with the outer space 

implies that 

( , ) ,         ( , ) ( ).a A R a a A Ru z k E E z k q E E= + = −v  

Expressing AE  and RE  with the help of ( , )au z k  and ( , )az kv , and taking account of 1TE = , 

we again obtain (1.1.17) for the amplitude transmittance and reflectance. 
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So, the calculation of amplitude coefficients in the P-case also comes down to the 

solution of differential equations (in this instance, it is the system (1.1.14)). 

Let us consider formulas (1.1.17) in greater detail. Note, that they solve the problem of 

calculating amplitude transmittance and reflectance for the layered medium of arbitrary type, 

either consisting of homogeneous layers or the one consisting of inhomogeneous layers with 

continuous or discretely continuous distribution of parameters. The layered medium can be 

absorbing. The substrate can also feature absorbing properties, in which case the sq  value in the 

initial conditions will be complex. 

Let us also note, that so far, most works employ the following technique for calculating 

the amplitude transmittance and reflectance for the optical coating with inhomogeneous layers. 

The inhomogeneous layers are broken into a great number (sometimes as many as thousands) of 

homogeneous layers, approximating a smooth curve of the parameter distribution. Then the 

amplitude coefficients are calculated by way of recurrent formulas (see section 1.2). This 

technique is in no way obligatory since any modern computer has standard software for 

differential equations systems solutions. It is erroneous to believe that employing recurrent 

formulas here prove to be more time-efficient. In fact, the situation is reverse. Any recurrent 

formulas require numerous calculations of trigonometric functions or of the complex argument 

exponentials, which, in their turn, result in a significant number of arithmetic operations. At the 

same time, standard software for differential equations systems employ but simplest arithmetic 

operations. They are all optimized in time-consumption. Employing differential equations 

(1.1.9), (1.1.14) for calculating the amplitude transmittance and reflectance of the optical coating 

with continuously changing parameters is also preferable from the point of view of the 

calculation precision. The step-like approximation of the parameters allow only the first order 

precision in calculations. At the same time standard software for differential equations systems 

employ methods of the fourth and higher order of precision. 

Systems of equations (1.1.9), (1.1.14) also allow to calculate the field distribution in the 

layered medium with an arbitrary dependence ( )zε . 

In order to calculate the amplitude coefficients of the medium consisting of homogeneous 

layers, various recurrent calculating techniques are preferable. They will be considered in the 

next section of the chapter. 

For the purpose of convenience, let us congregate all the results obtained above. The 

amplitude transmittance and reflectance in the S- and P-cases are calculated as 
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2 ( , ) ( , )
( ) ,         ( ) .

( , ) ( , ) ( , ) ( , )
a a a a

a a a a a a

q q u z k z k
t k r k

q u z k z k q u z k z k
−

= =
+ +

v
v v

 

where ( , ),  ( , )u z k z kv  functions are solutions of the differential equations system (1.1.9) 

in the S-case 

2,         ( )du dik ik z u
dz dz

ε α = = − 

vv  

and the differential equations system (1.1.14): 

in the P-case 
2

1 ,         ( ) .
( )

du dik ik z u
dz z dz

α ε
ε

 
= − = 

 




vv  

The initial conditions for the differential equations are set at the boundary with the 

substrate as 

(0, ) 1,         (0, ) .su k k q= =v  

The ,  ,  a sq qα  parameters are calculated from: 

sin ,a aα ε γ=  

in the S-case: 

2 2,         ,a a s sq qε α ε α= − = −  

in the P-case: 

2 2
,         .a s

a s

a s

q q
ε ε

ε α ε α
= =

− −
 

In many cases it is more convenient to employ the concept of the refractive index than 

that of the permittivity of the optical medium. The permittivity ε  is connected with the refractive 

index n  through the equation 
2.nε =  

If it is an absorbing medium, its refractive index, like its permittivity, is complex. We 

will also denote it with a wave line over the symbol. 

Thus, for the general case 
2( ) ( ).z n zε =   

Let us introduce the refractive indices of the outer space and the substrate as a an ε= ,  

and s sn ε=   respectively. Value of α  can now be expressed as 
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sina anα γ= , 

and the Snell law can be put down as 

sin sina a s sn nγ γ= . 

The aq  and sq  parameters are also conveniently expressed through corresponding 

refractive indices and wave propagation angles aγ  and sγ . Simplest arithmetic operations and 

the Snell law application permit to obtain 

in the S-case: 

cos ,         cos ,a a a s s sq n q nγ γ= =  

in the P-case: 

,         .
cos cos

a s
a s

a s

n n
q q

γ γ
= =  

 
1.1.3 The Fresnel formulas 
 

The results of the above considerations allow to easily obtain the Fresnel formulas for the 

amplitude transmittance and reflectance for the boundary between two media. Assume 0az = , 

then the layered medium under consideration will be reduced to the boundary between the outer 

space and the substrate. Here ( , ) (0, ) 1,  ( , ) (0, )a a su z k u k z k k q= = = =v v  and the following 

expressions are obtained for the amplitude coefficients: 

2
,         .a a s

a s a s

q q q
t r

q q q q
−

= =
+ +

 

Substituting ,  a sq q ,  expressed through refractive indices of the media and the wave 

propagation angles, we obtain 
 

in the S-case: 

2 cos cos cos
,         ,

cos cos cos cos
a a a a s s

a a s s a a s s

n n n
t r

n n n n
γ γ γ

γ γ γ γ
−

= =
+ +

 

in the P-case: 

2 cos cos cos
,         .

cos cos cos cos
a s a s s a

a s s a a s s a

n n n
t r

n n n n
γ γ γ

γ γ γ γ
−

= =
+ +
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Those are, in fact, the Fresnel formulas for the amplitude transmittance and reflectance 

for the boundary between the media featuring the an  and sn  refractive indices when the incident 

wave comes from the medium with refractive index an  at the incidence angle aγ .  

Note, that very often, the formula for the amplitude reflectance in the P-case is written 

down with the opposite sign. This result can be obtained if in both cases the amplitude 

reflectance is determined as the ratio of the field components perpendicular to the plane of 

incidence (being the electric vector components in the S-case, and the magnetic vector 

components in the P-case). We, however, determined the amplitude reflectance as the ratio of the 

tangential components of the electric vector for both cases. It seems a more proper way since it 

will eventually lead to coincidence of both amplitude reflectance expressions at the normal 

incidence of light when the difference between the S- and the P-components disappears. 

 

1.1.4 Other ways of determining amplitude transmittance and reflectance of the layered 
medium 

 

In a number of cases, other ways of determining amplitude transmittance and reflectance 

are preferable for the purpose of calculation and analytical investigation of their properties. 

In case of a non-absorbing medium or when the amplitude reflectance alone is sufficient 

for further use, it is convenient to employ a differential equation for a direct determination of 

( )r k .  Let us introduce the so-called local reflection function 

( , ) ( , )( , ) .
( , ) ( , )

a

a

q u z k z kr z k
q u z k z k

−
=

+
v
v

                                         (1.1.18) 

Here ( , )u z k  and ( , )z kv  are solutions of equations (1.1.9) or (1.1.14) for the S- and P-cases, 

respectively. In the ( , )r z k  function arguments we, like in the cases above, reveal its dependence on the 

wavenumber k . As is seen from the definition and formulas (1.1.17), the physical meaning of the local 

reflection function is revealed as follows. It gives the amplitude reflectance of the part of the layered 

medium confined within 0  and z  coordinates on condition that a homogeneous outer space featuring aε  

permittivity is found in the area to the right of z . It is evident that with az z=  the local reflection 

function coincides with the amplitude reflectance for the whole of the layered medium: 

( ) ( , ).ar k r z k=  

By differentiating expression (1.1.18) and employing equations (1.1.9) and (1.1.14), we 

obtain after a few non-complicated operations 
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for the S-case 

2 2 21(1 ) ( ) (1 )
2 a

a

dr ik q r z r
dz q

ε α
 

 = − − − +  
 

 ,                       (1.1.19) 

for the S-case 
2

2 2( )1 (1 ) (1 )
2 ( )a

a

dr ik zq r r
dz z q

α ε
ε

   = − − − +  
   





.                       (1.1.20) 

We obtain the initial conditions for these equations assuming 0z =  in (1.1.18) and 

employing the initial conditions (1.1.16) for u  and v . Here, for both polarizations 

(0, ) ,a s

a s

q qr k
q q
−

=
+

 

but, like before, aq  and sq  differ for the S- and P-cases. 

Equations (1.1.19), (1.1.20) are Riccati-type nonlinear differential equations. However, 

from the point of view of their numerical solution it involves no further difficulties compared to 

the linear equations (1.1.9), (1.1.14) solutions. On the contrary, if only the amplitude reflectance 

is sufficient, it is preferable to use equations (1.1.19), (1.1.20) as it involves only one complex 

equation for solution (or a system of two real) rather than a system of two complex equations (or 

four real ones), like in the case above. As to the rest, the general remarks we made at the end of 

1 .1 . 2  subsection, remain valid here. 

In this way we can try to obtain the ”local amplitude transmittance” equation. However, it 

is not worthwhile as no independent equation can be obtained for t: besides t it will also include 

the r -function of local reflection. So, if it becomes necessary to determine the amplitude 

transmittance, it is reasonable to use systems (1.1.9), (1.1.14) directly. 

 
1.1.5 Transmittance, reflectance and absorptance 
 

The magnitude and the direction of energy flow for the harmonic wave is determined by 

the time-averaged Poynting vector. It is found from the formula (see Born and Wolf, 1959): 

*Re , .
8
cS
π

 =  E H
  

 

The asterisk here is a symbol of complex conjugation, the square brackets denote the 

vector product. The energy flow along the normal toward the layered medium is determined by 
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the z -component of the Poynting vector. We obtain from (1.1.8), (1.1.13) for the S- and P-cases, 

that 

( )*Re .
8
cS u
π

= −


v                                                  (1.1.21) 

Assume again, that AE , RE  and TE  are amplitudes of the tangential components of the 

electric vector of the incident, reflected and transmitted waves. For the incident wave 

( ) ,  ( )a A a a Au z E z q E= =v  at the outer boundary of the layered medium. So, in compliance with 

formula (1 .1 .2 1 ) for the incident wave, the energy flow along the normal toward the layered 

medium at the outer boundary is proportional to 

{ } 2Re .a Aq E−  

The negative sign here indicates that the energy propagates in the negative direction of 

the z -axis. Similarly, taking into account that for the reflected wave ( ) ,  ( )a R a a Ru z E z q E= = −v , 

we obtain the energy flow for the reflected wave along the z -axis which is proportional to 

{ } 2Re .a Rq E  

The reflectance of the layered medium is determined as the ratio of absolute values of 

these flows and is, evidently, equal to 
2

2 ,R

A

ER r
E

= =                                                   (1.1.22) 

where r  is the amplitude reflectance. 

Similarly, we find that the transmitted wave energy flow along the z -axis is proportional 

to 

{ } 2Re .s Tq E−  

The transmittance is introduced as a ratio of the absolute value of this flow to the absolute 

value of the energy flow of the incident wave along the z -axis, and thus is equal to 

{ }
{ }

{ }
{ }

2
2Re Re
,

Re Re
s sT

a A a

q qET t
q E q

= =                                   (1.1.23) 

where t  is the amplitude transmittance. In the case of non-absorbing outer space and substrate 

{ } { }Re ,  Rea a s sq q q q= = . 
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Alongside with the transmittance and the reflectance, absorptance A  is introduced. It is 

determined as a part of the incident wave energy absorbed in the layered medium. The energy 

conservation law results in the equation 

1 .A R T= − −  

Let the incident light be linear polarized in the plane having an angle ψ  with the incident 

plane. In this case the reflectance and transmittance are determined from the formulas 
2 2 2 2sin cos ,         sin cos ,s p s pR R R T T Tψ ψ ψ ψ= + = +                    (1.1.24) 

where ,  ,  ,  s p s pR R T T  are reflectances and transmittances for the S-  and P-components of the 

field. In the case of non-polarized incident light, expression (1.1.24) is averaged with respect to 

the ψ  angle. As a result, we obtain 

( ) ( )1 1,         .
2 2s p s pR R R T T T= + = +                                   (1.1.25) 

 

1.2 Principal recurrent methods for calculating layered media 
spectral coefficients 

 

When solving various problems in multilayer optics field, we assume in most cases that a 

layered medium consists of a finite number of homogeneous and isotropic layers. In this case in 

order to determine the amplitude transmittance and reflectance, it is convenient and efficient 

mathematically to employ various recurrent calculating techniques. Depending on the specific 

problem to be solved, a specific technique is preferred. Mastering various methods expands one's 

concept of the properties of multilayer coatings. The application of these methods will further 

permit to obtain a number of significant conclusions for analysis and synthesis. 

 
1.2.1 Matrix calculating method 
 

The matrix method for calculating spectral coefficients of the layered media was first 

suggested by F. Abeles (1950) and has been widely employed ever since. The results of the 

previous section allow to provide here its very simple presentation. 

Let us assume a multilayer coating consisting of a finite number of homogeneous and 

isotropic layers (see Fig. 1.3). The figure shows that the same orientation of the z -axis with 

respect to the outer space and substrate as in the previous section is maintained. Let the total 



23 

 

number of the layers be equal to m . We will number the layers in the direction from the 

substrate to the outer space and denote their right boundaries as 1 2,  ,  ...z z . Thus, m az z= ,  where 

az  is a coordinate of the outer boundary of the coating (at the same time az  is a total geometrical 

thickness of the multilayer coating). Let us denote the geometrical thicknesses of the layers as 

1 2,  ,  ...d d ,  and their complex refractive indices as 1 2,  ,  ...n n  . Let us also denote the refractive 

indices of the substrate and of the outer space as sn , and an , respectively. The substrate 

refractive index may also be complex, thus the substrate can be absorbing. When evolving the 

formulas of the preceding section, it was convenient to use the complex permittivity of media. 

The complex refractive indices employed here are connected with ε  by the equation 
2 .n ε=   

As was shown earlier, the amplitude transmittance and reflectance can be determined in 

general cases by formula (1.1.17) using the solutions of the system of differential equations 

(1.1.9) in the S-case and (1.1.14) in the P-case. We will keep in mind that within each 

homogeneous layer, the solutions for these equations are written out explicitly. Let us first 

consider the S-component of the field. Equations (1.1.9) in the j -th layer are written down as 

follows: 

2 2,         .j
du dik ik n u
dz dz

α = = − 

vv                                        (1.2.1) 

 

 
Fig. 1.2. Multilayer coating including m  homogeneous layers. 

 

From (1.2.1) we obtain the following differential equation of the second order for u : 
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2
2 2 2

2 0.j
d u k n u
dz

α + − =                                              (1.2.2) 

It is convenient for further calculations to introduce the wave propagation angle in the  

j -th layer and denote it as jγ . It comes from the Snell law 

sin sin .j j a an nγ α γ= =                                             (1.2.3) 

Note, that jγ  is a complex value in the absorbing layer. Taking account of (1.2.3), 

equation (1.2.2) can also be written down as follows 

( )
2 2

2 cos 0.j j
d u kn u
dz

γ+ =                                            (1.2.4) 

Equation (1.2.4) has two linear independent solutions.lt is convenient to put them down 

as 

( ) ( )1 1 2 1( ) cos cos ,         ( ) sin cosj j j j j ju z kn z z u z kn z zγ γ− −
   = − = −      

with 1jz −  being the left boundary of the j -th layer. 

The general solution of equation (1.2.4) is their linear combination: 

( ) ( )1 1 2 1( ) cos cos sin cos .j j j j j ju z c kn z z c kn z zγ γ− −
   = − + −      

Assuming 1jz z −= , we find ( )1 1jc u z −= . Differentiating with respect to z  and assuming 

again 1jz z −= , we obtain 2 1cos ( )j j jkn c u zγ −′=  or taking account of the first equation in (1.2.1), 

we obtain ( )2 1( ) cosj j jc i z n γ−= v . Thus, the solution of equation (1.2.4) in the j -th layer takes 

the form 

( ) ( ) ( )1 1 1 1( ) ( ) cos cos ( )sin cos cos .j j j j j j j j j ju z u z kn z z i z kn z z nγ γ γ− − − −
   = − + −     v      (1.2.5) 

Differentiating ( )u z  function and substituting its derivative into the first equation of 

(1 .2 .1 ), we obtain 

( ) ( )1 1 1 1( ) cos ( )sin cos ( ) cos cos .j j j j j j j j j jz in u z kn z z z kn z zγ γ γ− − − −
   = − + −     v v      (1.2.6) 

Assuming jz z=  in (1.2.5) and (1.2.6), we obtain the equations 

( )1 1 1 1( ) ( ) cos ( )sin ,         ( ) ( )sin ( ) cos ,j j j j j j j j j j j ju z u z i q z z iq u z zϕ ϕ ϕ ϕ− − − −= + = +v v v   (1.2.7) 

where the following designations are introduced: 

1cos ,         ,        cos .j j j j j j j j j jkn d d z z q nϕ γ γ−= = − =   
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The jϕ  is known as an angular phase thickness of the j -th layer.  

Equations (1.2.7) can also be written down in the matrix form 

( )
1

cos sin
sin cos

j j

j j j

j jz z z zj

i qu u
iq

ϕ ϕ
ϕ ϕ

−= =

    
 =        v v

.                           (1.2.8) 

The matrix introduced in (1.2.8), i.e., 

( )cos sin
sin cos

j j j
j

j j j

i q
M

iq
ϕ ϕ

ϕ ϕ

 
 =
 
 

.                                       (1.2.9) 

is referred to as the characteristic matrix of the j -th layer. According to (1.2.8), it allows 

recalculating the field from one boundary of the j -th layer to the other one. 

Since the ,  u v  functions are continuous at the boundaries between the layers, we can 

recalculate the field from its boundary with the substrate 0 0z =  to the boundary with the outer 

space m az z=  making use of the characteristic matrices and formulas (1.2.8). In fact, by doing 

so, we find a solution of the differential equations for the field in the layered medium. So, we 

obtain 

1 1
0

 ... 
a

m m
z z z

u u
M M M−

= =

   
=   

   v v
.                                      (1.2.10) 

The product of the characteristic matrices of the layers 

1 1 ... m mM M M M−=                                                  (1.2.11) 

is known as the characteristic matrix of the multilayer coating. Let us denote its elements ijm : 

11 12

21 22

m m
M

m m
 

=  
 

 

Mind that the co-factors in (1 .2 .1 1 ) are taken in the direction from the outer space 

towards the substrate. 

Formulas (1.1.17) for the amplitude transmittance and reflectance include special 

solutions of the differential equations system featuring initial conditions 

(0, ) 1,         (0, ) ,su k k q= =v                                          (1.2.12) 



26 

 

where 2 coss s s sq nε α γ= − = . The characteristic matrix of a multilayer coating allows to find 

these solutions. Substituting the initial conditions (1.2.12) into the right part of (1 .2 .1 0 ) we 

obtain 

11 12

21 22

( , ) ,
( , ) .

a s

a s

u z k m m q
z k m m q

= +
= +v

 

Substituting these solutions then into (1.1.17), we find that 

11 22 12 21

2( ) ,a

a s a s

qt k
q m q m q q m m

=
+ + +

                                     (1.2.13) 

11 22 12 21

11 22 12 21

( ) ,a s a s

a s a s

q m q m q q m mr k
q m q m q q m m

− + −
=

+ + +
                                     (1.2.14) 

where 2 cosa a a aq nε α γ= − = . 

These expressions give the final formulas of the Abeles matrix method. In order to use 

them for calculating the amplitude transmittance and reflectance it is necessary to calculate 

characteristic matrices of the layers and find their product (1 .2 .1 1 ) which is the characteristic 

matrix of the multilayer coating. 

In the P-polarization case, similar manipulations result again in formulas (1.2.13), 

(1.2.14) for amplitude transmittance and reflectance. The only difference here is the fact that the 

jq  values in the characteristic matrices of the layers (1.2.9) are determined in P-case by the 

equations cosj j jq n γ=  , while ,  s aq q  in (1.2.13), (1.2.14) are equal to coss sn γ  and 

cosa an γ , respectively. 

The transmittance and reflectance are determined through amplitude coefficients in 

accordance with the formulas: 

2 2,         .s

a

q
T t R r

q
= =  

For the sake of the user’s convenience, Table 1.1 presents parameters included into 

calculating formulas (1.2.9), (1.2.13) and (1.2.14). The angles presented in Table 1.1 are 

determined from the Snell law: 

sin sin sin ,s s j j a an n nγ γ γ= =  

where aγ  is the angle of incidence (a given value). 
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 sq  aq  jq  jϕ  

S-case coss sn γ  cosa an γ  cosj jn γ  cos ,
2

j j jkn d
k
ϕ γ

π λ

=

=



 
P-case coss sn γ  cosa an γ  cosj jn γ  

   Table 1.1: The calculation formulas parameters 

With absorption absent, the refractive indices, jγ -angles, and all the parameters 

presented in Table 1.1 are real. So the elements on the principal diagonals of the characteristic 

matrices of the layers will be real, while those on the subsidiary diagonals will be imaginary. By 

multiplying the matrices it is easy to check that the characteristic matrices of the coating will 

feature the same property. Thus, the first two items in the denominator of the expression for t  

are real, while the two others are imaginary. It means that the transmittance for a non-absorbing 

coating may be put down as: 

( ) ( )2 2
11 22 21 12

4 .a s

a s a s

q qT
q m q m m q q m

=
+ − +

 

The negative sign here compensates the square of the imaginary unit included into the 

second brackets in the denominator. There is no need for a separate reflectance formula, as 

1R T= − . 

The matrix method permits an easy calculation of the electromagnetic field distribution in 

the layered medium. Formulas (1.2.5) and (1.2.6) determine the tangential components of the 

electric and magnetic vectors of the S-component of the field at some arbitrary point of j -th 

layer. Similar formulas exist for the P-component of the field. Together they can be presented in 

the common form as: 

( )1 1 1 1

1 1 1 1

( ) ( ) cos cos ( ) ( )sin cos ( ) ,

( ) ( )sin cos ( ) ( ) cos cos ( ) .

j j j j j j j j j

j j j j j j j j j

u z u z kn z z i q z kn z z

z iq u z kn z z z kn z z

γ γ

γ γ

− − − −

− − − −

   = − + −   
   = − + −   

 

 

v

v v
 

In order to calculate the field distribution in accordance with these formulas, it is 

necessary to express 1 1( ),  ( )j ju z z− −v  through the amplitude of the incident wave. Let us denote 

as E  the tangential component of the electric vector of the incident wave in S- or P-cases. Then 

for the transmitted wave (0) ,  (0) (0)s su tE q u q tE= = =v . Calculating the field with the help of 

characteristic matrices of the layers onto the boundary 1jz z −= , we will obtain the sought for 

expression: 
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1
1 1

1

( ) 1
 ... .

( )
j

j
sj

u z
M M tE

qz
−

−
−

   
=       v

 

 

1.2.2 Description of optical coating and presentation of calculation results 
 

The geometrical thicknesses of the layers and the wavelength λ  enter the calculation 

formulas for r  and t  only in combination 2kd dπ λ= . This means that a simultaneous 

proportional change of the thicknesses of all layers and of the wavelength do not change the 

values of r  and t  (providing the refractive indices of all layers remain unchanged). Thus, in a 

spectral band where the dispersion of the refractive indices can be neglected, proportional 

changes of the thicknesses of all layers result in a shift of the reflectance and transmittance 

curves along the spectral band. In this connection, when describing the coating structure, it is 

convenient to use relative values of layer thicknesses rather than their absolute values. 

Most widely recognized is the way of description where the optical thicknesses of the 

layers j jn d  are designated as fractions of 0 4λ , with 0λ  being a certain basic wavelength. Let, 

for instance, a coating be a two-component one, consisting of alternating layers featuring high 

Hn  and low Ln  refractive indices. Consider the example of writing down structure of such a 

coating: 

4 0.5 2SH L HL . 

Number 4 on the extreme left shows the total number of layers in the given coating, the 

following letter S  stands for the substrate. Then there is a consecutive list of the optical 

thicknesses in the direction from the substrate to the outer space. The letters H  and L  refer to the 

layers having the refractive indices of Hn  and Ln ,  respectively. The numerical coefficients 

before them show the optical thicknesses of the layer as fractions of 0 4λ . If a coefficient is 

absent, the corresponding layer has a quarter-wave optical thickness. Thus, the coating described 

above has the first layer featuring the refractive index Hn  and the optical thickness 00.25λ , the 

second one has the refractive index Ln  and the optical thickness 00.125λ , the third one features 

the refractive index Hn  and the optical thickness 00.5λ , while the fourth one has the refractive 

index Ln  and the optical thickness 00.25λ . 
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The structural description is accompanied by indication of refractive indices for the 

substrate and the layers, for instance: 1.52,  2.00,  1.45s H Ln n n= = = . A lack of any mention of 

the outer space proves that the outer space is the air. If the outer space is presented by a different 

substance, its refractive index is specified. 

If re-iterated groups of layers occur in a coating, the number of reiterations is usually 

revealed as the power index and the re-iterated group is put in brackets. For example the two 

descriptions below are equivalent: 

( )49       and      9SHLHLHLHLH S HL H  

When a coating has layers of three or more different materials, additional designations 

are introduced: M, A, B, … .  The letter M is usually used to designate the layers with the 

refractive index lying between Hn  and Ln .  

The basic wavelength 0λ  is not necessarily specified in the description of the coating 

structure. The spectral curves of the transmittance and reflectance can be conveniently presented 

as a dependence of 0λ λ  or 0λ λ . Substituting a specific value of 0λ  we determine the 

thicknesses of the coating layers and the spectral band where it will be valid. 

Let us consider a seventeen-layer dielectric narrow bandpass filter featuring the 

( ) ( )4 417 2S HL H LH  design as an example. The refractive indices of the substrate and the layers 

have the following values: 1.52,  2.3 0.0002,  1.35 0.0002s H Ln n i n i= = − = −  . Thus, the materials 

of the layers are low absorbing. The calculation results for transmittance, reflectance and 

absorptance are given in Table 1.2. The Table 1.2. provides both a relative scale of wavelengths 

0λ λ  and that in nanometers, corresponding to 0 500 nmλ = . 
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λ ,nm  0λ λ  T, %  R,  %  A, %  

480  0.960  0.146  99.721  0.133  

485  0.970  0.238  99.616  0.146  

492  0.984  0.780  98.982  0.238  

497  0.994  5.196  93.786  1.018  

499  0.998  31.286  63.049  5.665  

500  1.000  83.401  1.597  15.002  

501  1.002  31.429  62.827  5.744  

503  1.006  5.312  93.624  1.064  

508  1.016  0.829  98.917  0.254  

515  1.030  0.264  99.585  0.151  

520  1.040  0.165  99.702  0.133  
 

Table 1.2: Transmittance, reflectance and absorptance of the seventeen- layer narrow 

bandpass filter: ( ) ( )4 417 2S HL H LH  with 1.52,  2.3 0.0002,  1.35 0.0002s H Ln n i n i= = − = −   

1.2.3 Recurrent formulas for the amplitude transmittance and reflectance 
 

Let us consider another convenient method frequently employed in calculating the 

amplitude transmittance and reflectance. 

Let us return to formulas (1.1.17) and introduce, by analogy, ’’intermediate” transmission 

and reflection coefficients. 

1
1,0

1

1
1,0

1

2
,

( , ) ( , )
( , ) ( , )

.
( , ) ( , )

j
j

j j j

j j j
j

j j j

q
t

q u z k z k
q u z k z k

r
q u z k z k

+
+

+

+
+

+

=
+

−
=

+

v
v
v

                                           (1.2.15) 

They can be regarded as transmission and reflection coefficients for the subsystem of the 

layers from 1st through j -th, provided the outer space has the refractive index 1jn + . It is 
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convenient to hold further that the refractive index with the 0  index coincides with the refractive 

index of the substrate: 

0 .sn n=  

Introduction of orderly arranged index pair 1,  0j +  in amplitude coefficients 

designations is convenient because the pair simultaneously indicates the refractive indices of the 

framing media ( 1jn +  and 0 sn n= ) and the direction of the wave propagation (from medium with 

number 1j +  to the substrate). It will be natural to mark the outer space with number 1m +  and 

to mark all the values pertaining to this space by the subscript 1m + . For instance, the outer 

space refractive index an  will have another designation of 1mn + . Since in this case 

1 ,m aq q+ =  

expressions (1.2.15) for 1,0 1,0,  m mt r+ +  will coincide with (1.1.17) and thus the following equations 

will be valid for the amplitude transmittance and reflectance of the whole coating 

1,0 1,0,         .m mt t r r+ += =                                               (1.2.16) 

Assuming 0j =  and taking account of the initial conditions for the u  and v  functions at 

the point 0 0z = , we obtain 

11
1,0 1,0

1 1

2
,         .s

s s

q qq
t r

q q q q
−

= =
+ +

                                       (1.2.17) 

Those are nothing else but the Fresnel coefficients for the boundary between the first 

layer and the substrate. Expressions (1.2.17) set the initial conditions for the recurrent calculation 

method. The method itself consists in consecutive recalculations of the 1,0 1,0,  j jt r+ +  values from 

1j =  to j m=  in accordance with the recurrent formulas connecting these coefficients with 

,0 ,0,  j jt r . 

In order to obtain these recurrent formulas, let us write out the expressions for ,0 ,0,  j jt r  

similar to (1.2.15): 

,0
1 1

1 1
,0

1 1

2
,

( , ) ( , )
( , ) ( , )

.
( , ) ( , )

j
j

j j j

j j j
j

j j j

q
t

q u z k z k
q u z k z k

r
q u z k z k

− −

− −

− −

=
+

−
=

+

v
v
v

 

From these formulas we obtain that 
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,0 ,0
1 1

,0 ,0

1 1
( , ) ,         ( , ) .j j

j j j
j j

r r
u z k z k q

t t− −

+ −
= =v  

Equations (1.2.7) can now be rewritten as 

,0 ,0 ,0

,0 ,0 ,0 ,0

,0 ,0 ,0

,0 ,0 ,0 ,0

1 1 1( , ) cos sin ,

1 1
( , ) sin cos .

j j

j j

i ij j j
j j j

j j j j

i ij j j j j
j j j j j

j j j j

r r r
u z k i e e

t t t t
r r q q r

z k iq q e e
t t t t

ϕ ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ

−

−

+ −
= + = +

+ −
= + = −v

 

Substituting these expressions into (1.2.15), we will obtain the sought for recurrent 

formulas. Introducing the Fresnel transmission and reflection coefficients for the boundary 

between the ( 1)j + -st and the j -ih layer for the wave incident from the ( 1)j + -st layer 

1 1
1, 1,

1 1

2
,         .j j j

j j j j
j j j j

q q q
t r

q q q q
+ +

+ +
+ +

−
= =

+ +
 

we will write down the recurrent formulas in the following way: 

1, ,0
1,0

1, ,0

1, ,0
1,0
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                                          (1.2.18) 

Making recalculations with these formulas employed m  times for 1,  2,  ... ,  j m= , we 

will determine the values of 1,0 1,0,  m mt r+ + , i.e., in accordance with (1.2.16) we will determine the 

amplitude transmittance and reflectance of the whole coating. 

Note, that the obtained formulas are valid for both polarization cases. The type of 

polarization will only determine specific numerical values of the Fresnel coefficients in formulas 

(1.2.18) and the initial conditions (1.2.17). For the S- and P-cases they are calculated applying 

the expressions cited in Table 1.1. 

Transmittance and reflectance of the coating as a whole are obtained from the formulas 

2 2
1,0 1,0,         .s

m m
a

q
T t R r

q + += =  
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1.2.4 Approximate formulas 
 

Approximate formulas for calculating transmittance and reflectance of a multilayer coating are of 

non-recurrent nature. Due to this fact, they prove to be convenient in a number of cases for 

analyzing the optical properties of the coating. Besides, they economize the calculation time 

needed to determine transmittance and reflectance, which can be quite essential for coating 

design. The precision of the approximate formulas, as is seen from the example below, is 

sufficiently high for many cases. Here we supply but final results. For the absorbing m-layer 

coating the following approximate formula is valid (Delano and Pegis, 1969): 

,r B
t D
≈  

where 

( )

( )

1, , 1
1

1, , 1
1

exp ,                2 ,

exp .

m m

m m j j j j l
j l j

m

m m j j j
j

B r r i

D t t i

β β ϕ

ϕ

+ −
= =

+ −
=

= + − =

= ∏ −

∑ ∑
 

All the designations here have the same sense as in the previous subsection.  

For a non-absorbing coating, reflectance and transmittance may be approximately 

calculated from the formulas, provided that there is no total internal reflection in any layer: 
2 2

2 ,         ,
B BRR

T CB C
≈ ≈

+
 

where 

( )

2 2
2

1, , 1 , 1
1 1

2
, 1

1

cos sin ,

1 .

m m

m m j j j j j j
j j

m

j j
j

B r r r

C r

β β+ − −
= =

−
=

   
= + +   
   

= ∏ −

∑ ∑
 

As the reflectance of the coating grows, the accuracy of the formulas decreases. 

However, in many cases, the results of approximate calculations agree well with precise ones, up 

to the value of 0.8R ≈ . Fig. 1.4 supplies the calculation results in accordance with the precise 

and approximate formulas for a three-layer coating featuring the structure 

3SHLH , 1.52,  2.30,  1.38s H Ln n n= = =  at the normal angle of incidence. Some special types of 

coatings, such as multilayer dielectric mirrors, dielectric narrow bandpass filters may require and 
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get other approximate formulas, describing their major spectral properties with a sufficient 

degree of accuracy. They will be considered later in this Chapter. 

 

 
Fig. 1.4: Comparative calculation of the reflectance of the three-layer 3SHLH  coating 

following explicit and approximate formulas: 1  - explicit formulas, 2  - approximate 

formulas. 

 
1.2.5 Other recurrent methods 
 

Alongside with the above, other recurrent methods for calculating transmittance and 

reflectance of multilayer coatings prove convenient. Let us consider here the impedance and the 

admittance methods. 

Let us introduce impedance both in the S- and the P-cases through an equation 

( , )( , ) .
( , )

u z kZ z k
z k

=
v

 

Thus, impedance is a ratio of the tangential components of the electric and the magnetic 

vectors. 

Admittance is a value reverse to impedance: 

1( , ) .
( , )

A z k
Z z k

=  
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Let us note that continuity of the tangential components of the electric and magnetic 

vector prescribes presupposed impedance and admittance continuity at the boundaries of the 

layers. 

Impedance and admittance at the point az , i.e., at the outer boundary are known as the 

input impedance and input admittance, respectively. It follows from (1.1.17) that the amplitude 

reflectance can be simply expressed through the input impedance and admittance: 

( , ) 1 ( , )( )
( , ) 1 ( , )

a a a a

a a a a

q Z z k q A z kr k
q Z z k q A z k

− −
= =

+ +
                                     (1.2.19) 

It is exactly this that provides a faculty to employ impedance and admittance in 

calculations. 

Differential equations for impedance and admittance can be easily obtained from systems 

(1.1.9), (1.1.14) for the u  and v  functions. For impedance, they take the form of 

in the S-case 

{ }2 21 ( )dZ ik z Z
dz

ε α = − −  ,                                    (1.2.20) 

in the P-case 
2

21 ( )
( )

dZ ik z Z
dz z

α ε
ε

 
= − − 

 




.                                   (1.2.21) 

The initial conditions for equations (1.2.20), (1.2.21) follow from (1.1.16): 

1(0, ) .
s

Z k
q

=                                                      (1.2.22) 

Having found the solution of the equations (1.2.20), (1.2.21) with the initial conditions 

(1.2.22) ( sq are different for the S- and P-cases), we can calculate the amplitude coefficients 

, ( )s pr k  from the formula (1.2.19). 

For admittance we obtain the following equations: 

in the S-case 

{ }2 2( ) ,dA ik z A
dz

ε α= − −                                            (1.2.23) 

in the P-case 
2

2( ) 1 .
( )

dA ik z A
dz z

αε
ε

   = − −  
   




                                       (1.2.24) 
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The initial conditions for equations (1.2.23), (1.2.24) take the form of 

(0, ) .sA k q=                                                        (1.2.25) 

In the case of a multilayer coating, consisting of homogeneous layers, recurrent formulas 

for impedance and admittance are obtained directly from the formulas of the Abeles matrix 

method. Let us designate jZ  and jA  impedance and admittance at the boundary of the j -th and 

( 1)j + -st layers. Dividing the equations (1.2.7) by each other, we obtain 

( )1

1

cos sin
,

sin cos
j j j j

j
j j j j

Z i q
Z

iq Z
ϕ ϕ

ϕ ϕ
−

−

+
=

+
                                      (1.2.26) 

( )
1

1

sin cos
.

cos sin
j j j j

j
j j j j

iq A
A

i q A
ϕ ϕ

ϕ ϕ
−

−

+
=

+
                                      (1.2.27) 

The initial values for equations (1.2.26), (1.2.27) are set by equations (1.2.22), (1.2.25): 

0 0
1 ,       .s

s

Z A q
q

= =  

The values ,   m mZ A  obtained at the m -th step of the recurrent procedure reveal the input 

impedance and input admittance, and, thus, amplitude transmittance and reflectance for both cases of 

polarization are calculated from formula (1.2.19). 

Note that by using values obtained in the course of recurrent procedure the amplitude 

transmittance can be obtained too. Let us see how it can be made employing the impedance 

method. 

For this purpose, the electromagnetic field in every layer and in the outer space ought to 

be represented as the sum of the fields of two waves, one of which is transmitted in the positive 

direction of the z -axis, and the other in the negative one. Let us designate the complex 

amplitudes of the tangential components of the first one as ,  u+ +v , and ,  u− −v  of the second 

one. These amplitudes in the j -th layer are connected through equations: 

,         .j jq u q u+ + − −= − =v v                                         (1.2.28) 

The amplitude transmittance, as follows from the definition, is equal to 

0( 0, )
( ) .

( 0, )m

u z k
t k

u z k

−

−

−
=

+
                                              (1.2.29) 
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We will obtain a recurrent formula for recalculating u- field components from the left 

boundary of a multilayer coating to the right one. As follows from (1.2.28), 

( )jq u u+ − − += + = −v v v . Using the equality u u u− ++ =  we find that in the j -th layer 

1
2 j

u u
q

−
 

= +  
 

v .                                                   (1.2.30) 

The u−  field component is not continuous at the boundaries of the layers. At the right 

boundary of the j -ih layer, that is when 0jz z= −  in accordance with (1.2.30) and continuity of 

the u  and v  functions 

1 1( 0, ) ( , ) .
2j j j

j

u z k z k Z
q

−
 

− = +  
 

v  

Similarly, at the left boundary of the ( 1)j + -st layer, that is at the point 0jz z= +  

1

1 1( 0, ) ( , ) .
2j j j

j

u z k z k Z
q

−

+

 
+ = +  

 
v  

From these two equations we find how the u−  field component changes when crossing 

the boundary of the j -th and the ( 1)j + -st layer: 

11
( 0, ) ( 0, ) .

1
j j

j j
j j

Z q
u z k u z k

Z q
+− − +

+ = −
+

                                  (1.2.31) 

In the j -th layer, a wave transmitting in the negative direction of the z -axis takes a 

dependence on z  in the form of ( )exp cosj jikn zγ . So the following equation is valid in the j -th 

layer 

1( 0, ) ( 0, ) ji
j ju z k u z k e ϕ− −

−− = +                                      (1.2.32) 

Applying alternatively formulas (1.2.31) and (1.2.32), we can express ( 0, )mu z k− + ) 

through 0( , )u z k− . Substituting the result into (1.2.29), we obtain 

1

11 1

12
.

1
j

m ij j

js j j

Z qq
t e

q q Z q
ϕ−

=
+

+
= ∏

+ +
                                     (1.2.33) 

From (1.2.33) a similar expression for the amplitude transmittance through admittance 

can be easily obtained: 
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11 1

2 .j
m ij ja

js j j

A qqt e
q q A q

ϕ−

=
+

+
= ∏

+ +
                                      (1.2.34) 

 
1.2.6 The admittance phase plane 

 

Visual geometrical representations of the employed algorithms often help essentially in 

solving problems, contributing to a more thorough understanding of a problem in question. In the 

field of multilayer optics such representation can be achieved through a geometrical 

interpretation of the admittance calculation method. As was mentioned in the previous 

subsection, a convenience of employing admittance is due to the simplicity of the formula 

connecting the amplitude reflectance with the input admittance: 

( , )( )
( , )

a a

a a

q A z kr k
q A z k
−

=
+

. 

This connection is reversible: ( , )aA z k  is, in its turn, expressed through ( )r k according to 

the formula 

1 ( )( , ) .
1 ( )a a

r kA z k q
r k

−
=

+
                                            (1.2.35) 

So design problems connected with the amplitude reflectance can be transformed for the 

input admittance. For instance, obtaining a multilayer coating with a given amplitude reflectance 

( )r k  is equivalent to obtaining a coating with a given input admittance determined through ( )r k  

according to the formula (1.2.35). 
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Fig. 1.5: Admittance phase plane 

Admittance is a complex value. Geometrically it can be represented as a point on a 

complex plane (see Fig. 1.5). Let us call this plane an admittance phase plane. Assume, that a 

multilayer coating is non-absorbing. To make calculations and transformations brief, let us 

consider a normal incidence of light. As seen from the following, all the results are also valid for 

oblique wave incidence. 

In case of a normal incidence, the formulas of the admittance method (see (1.2.25), 

(1.2.27) and (1.2.19)) take the following form: 

0 (0, ) ,sA A k n≡ =                                                    (1.2.36) 

( )
1

1

sin cos
.

cos sin
j j j j

j
j j j j

in A
A

i n A

ϕ ϕ

ϕ ϕ
−

−

+
=

+
                                         (1.2.37) 

where ,   1,  ... ,  ,j j jkn d j mϕ = =  

( , )( ) .
( , )

a a

a a

n A z kr k
n A z k
−

=
+

                                                 (1.2.38) 

where ( , ) .a mA z k A≡  

Recurrent formulas (1.2.27) were obtained from formulas (1.2.7) of the matrix method. 

However, they could be obtained directly from the differential equation for admittance. In case 

of normal incidence, equations (1.2.23) and (1.2.24) coincide and take the form 
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2 2( ) .dA ik n z A
dz

 = −                                                 (1.2.39) 

For a multilayer coating the ( )n z  function takes constant values inside every layer and 

features discontinuity at the boundaries of layers (see Fig 1.3). In compliance with the condition, 

the solution of equation (1.2.39) is continuous at the discontinuity points of ( )n z . Let us consider 

the solution of this equation inside an arbitrary homogeneous layer. Let us designate its left 

boundary as ẑ , the value of admittance at this point as Â  (thus we set the initial condition for 

equation (1.2.39)) and the refractive index of the layer as n . Substituting into equation (1.2.39) 

one can easily check that the solution in the layer with the constant n  takes the form 

( )
ˆˆ ˆsin ( ) cos ( )( ) .ˆˆ ˆcos ( ) sin ( )j

in kn z z A kn z zA z
kn z z i n A kn z z

− + −
=

− + −
                             (1.2.40) 

Assuming ˆz z=  in (1.2.40), we see that ˆˆ( )A z A= . 

The solution in the form of (1.2.40) is valid, in particular, in the j -th layer. Here 

1 1
ˆˆ,  ,  j j jn n z z A A− −= = = , and if the right boundary jz  is taken as z , then we obtain from 

(1.2.40) the recurrent formula (1.2.37). 

We, however, need expression (1.2.40) for other purposes. As was mentioned earlier, 

admittance can be represented as a point on the complex plane. With z  changing, the value of 

admittance will change and, consequently, the point will plot some trajectory in the admittance 

phase3 plane. 

Let us find out what the solution trajectory looks like. For this purpose, let us divide both 

the numerator and the denominator in (1.2.40) by ˆsin ( )i kn z z− . 

We will obtain 

ˆ ˆcot ( )( ) .ˆˆcot ( )
n iA kn z zA z
i kn z z A n
− −

=
− − +

                                     (1.2.41) 

Let us introduce a new variable 

ˆcot ( )kn z zξ = − −  

and rewrite (1.2.41) as 

 
3 In mathematics and mechanics, the trajectories of differential equations and space where these trajectories are plotted, 

are customarily known as phase trajectories and space. It will be only natural to include the problems under consideration 
here into those covered by the term. 
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ˆ
.ˆ

n iAA
i A n

ξ
ξ
+

=
+

                                                     (1.2.42) 

The function of ξ  in the right part of (1.2.42) is known as linear fractional. The relation 

(1.2.42) is conveniently regarded as a linear fractional transformation of the complex variable ξ  

in the complex variable A . 

With z changing from ẑ  to ˆ ( )z knπ+  the variable ξ  runs along the real axis from −∞  

to +∞ . With further growth of z , the variable ξ  runs along the same values again. In 

accordance with the well-known property of the linear fractional function, circles in the ξ  

complex plane transform into circles in the A  complex plane. A particular case of a circle is a 

straight line (a circle with an infinite radius). It follows, that with the change of the variable z the 

variable ( )A z  will move along some circle in the admittance phase plane (see Fig. 1.5). 

Point Â  belongs to this circle. It corresponds to the value ˆz z=  or ξ = −∞ . With z  

changing from ẑ  to ˆ ( )z knπ+  (correspondingly, ξ  from −∞  to +∞ ) the point ( )A z  makes a 

complete revolution. 

Let us determine coordinates of the center and the radius of this circle. For this purpose 

we make use of the symmetrical property of the linear fractional transformation. Let us take two 

points iξ =  and iξ = − . They are symmetrical with respect to the real axis in the ξ  complex 

plane. In the course of the linear fractional transformation, points symmetrical with respect to the 

circle in ξ  plane are transformed to the points symmetrical with respect to the circle image in the 

A  plane. With iξ = ±  we obtain the following values of admittance from (1.2.42) 

ˆ ˆ
( ) ,          ( ) .ˆ ˆ1 1

n A n AA z n A z n
A n A n

− +
= = − = =
− + +

 

Thus, points n−  and n  are symmetrical with respect to our circle. Symmetrical points lie 

on the direct line passing through the center of the circle. It follows from here that the center of 

the circle lies on the real axis in the admittance phase plane. 

Let us designate the circle center as (0, )ζ  and its radius as R . By the very definition of 

symmetrical points they satisfy condition 
2( )( ) .n n Rζ ζ− + =                                                  (1.2.43) 
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This equation contains two unknown values: ζ  and R . Taking into account that initial 

admittance value belongs to the circle in question, we can obtain another equation for their 

definition: 
2 2ˆ .A Rζ− =                                                      (1.2.44) 

Assuming (1.2.43) equal to (1.2.44), we obtain equation for determining the coordinate of 

the circle center: 
22 2 2ˆ ˆ2Ren A Aζ ζ ζ− = − +  

This gives 
2 2ˆ

ˆ2 Re

A n

A
ζ

+
= .                                                     (1.2.45) 

Substituting (1.2.45) into (1.2.44), we obtain the radius of the circle. It is not complicated 

to check that the expression for the radius can be transformed into 
2 2ˆ| | .ˆ2Re

A nR
A

−
=                                                      (1.2.46) 

As we see from (1.2.45), (1.2.46), the parameters of the circle along which the admittance 

for a given layer is moving, are completely determined by the refractive index of the layer and 

the admittance value on its left boundary. When passing to another layer, the admittance moves 

along a new circle with other parameters. 

Let us show that all circles are located in the right part of the admittance phase plane. In 

the first layer the initial condition for the admittance is set by the equation (1.2.36). It follows 

from (1.2.46) that the center of this circle is located on the positive part of the real axis. 

According to (1.2.43), 
2 2 2 2R nζ ζ= − < ,                                                      (1.2.47) 

and, consequently, the circle is located in the right part of the admittance phase plane (see Fig 

1.5). So, the condition ˆRe 0A >  is valid for all the points on the circle. One of these points sets 

the initial condition for the second layer. So, the center of the second circle also lies in the 

positive part of the real axis. According to (1.2.47), any circle with the center 0ζ >  is 

completely located in the right half-plane. Developing this consideration, we find that the 

condition 

Re 0A >                                                           (1.2.48) 
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is always valid for admittance. It is the principal condition of the physical feasibility of 

admittance which could also be obtained directly from (1.2.23), (1.2.24). It is not difficult to 

show that it is completely equivalent to the condition of the physical feasibility of the amplitude 

reflectance | | 1r < . 

Note that one of the two points, n−  or n , symmetrical with respect to the circle, 

inevitably lies within the circle. Since the circle lies in the right half-plane, the inner point is 

evidently n . 

Let us find now in what direction the admittance movement along the circle in the phase 

plane is effected. 

The linear fractional transformation is a particular case of a conformal transformation. In 

accordance with the well known property, the direction of passing round the domain in a 

complex plane remains unchanged while the conformal transformation is done. The point i−  lies 

in the ξ  plane to the right of the real axis with respect to the variable ξ  passing from −∞  to+∞ . 

So, its image, the point n during passing round the circle in the A -plane ought to remain to the 

right side of this circle. It follows from here that the movement along the circle in the admittance 

phase plane always goes clockwise. 

As was shown above, the center and the radius of the circle are determined by the layer 

refractive index and the admittance initial value on its left boundary. With different initial values, 

the circles along which point A moves are different. Note, however, that in accordance with 

(1.2.43), the coordinates of the centers and radii of all these circles are unambiguously connected 

between themselves: 
2 2 2.n Rζ − =  

Thus, for a given layer with the refractive index n there is an infinite set of circles which 

can serve as admittance movement paths. Fig. 1.5 plots in dashed lines a number of circles of this 

set. With 0R →  they urge towards the point n . 

For layers featuring different refractive indices, the set of circles is different. On the 

whole, each one of these sets completely fills the right side of the half-plane. Let us also note, 

that all the circles of the set are inserted into each other and do not cross. 

We can consider the problem of eliminating the reflectance from the boundary between 

the substrate and the outer space as an example of a practical application of the discussed 

geometrical representations. According to the formula (1.2.38), it is necessary and sufficient for 

complete eliminating the reflectance to have the input admittance equal to the refractive index of 
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the outer space. Geometrically, it means that the admittance trajectory ought to terminate at the 

point an  (Fig. 1.6). The beginning of the trajectory is point sn . Assuming 1,  sA n n n= =  in 

(1.2.45), (1.2.46), we will find the parameters of the circle along which the admittance moves in 

the first layer: 
2 22 2

11
1 1,         .

2 2
ss

s s

n nn n R
n n

ζ
−+

= =  

This circle is marked as number 1 in Fig. 1.6 (representing a 1 sn n>  case). The set of circles 

corresponding to the layer featuring refractive index 2n , has a circle crossing the na point. Let us 

show that its parameters can also be found from the formulas (1.2.45), (1.2.46). Actually, the 

condition of belonging to a set of circles takes the form (1.2.43) with 2n n= , and the condition of 

passing through point an  takes the form of (1.2.44) with ˆ
aA n= .  So, the relations (1.2.45), 

(1.2.46), obtained from (1.2.43), (1.2.44) are valid for the case under consideration (generally 

speaking, Â  can be any point of the circle). Thus, the center and the radius of the circle are 

determined from the formulas 
2 22 2

22
2 2,         .

2 2
aa

a a

n nn n
R

n n
ζ

−+
= =  

If the circle thus plotted (it is designated as number 2 in Fig. 1.6) crosses the first circle, 

then the admittance trajectory leading from point sn  to point an  can be easily found. One of the 

two trajectories of this type is plotted in a thick solid line in Fig. 1.6. Thus, crossing of the circles 

1 and 2 means a possibility of reduction reflection to zero with the help of a two-layer coating. 

The thicknesses of the layers are determined by the admittance value at the crossing point of the 

two circles. 

In conclusion of this section, let us consider another important result which can be easily 

established on the basis of the analyzed geometrical interpretation of admittance. 

Let us find out whether a multilayer coating with any pre-set amplitude reflectance (at a 

certain fixed wavelength) can be obtained. We showed earlier that the task of obtaining a 

predetermined amplitude reflectance is completely equivalent to the task of obtaining a 

corresponding input admittance. So, let aA  be an arbitrarily set input admittance (naturally, 

meeting the requirements of a physical feasibility (1.2.48)). Let us consider a two-component 

multilayer coating consisting of layers with alternating refractive indices 1n  and 2n . Let us 
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designate the sets of circles for such layers as 1C  and 2C .  In Fig. 1.7, the solid lines show the 

circles of the first set, and the dashed lines - those of the second one (assuming 2 1sn n n< < ). 

Circles of every set fill completely the whole of the right half-plane. Note, that any circle of one 

set crosses an infinite number of circles of the other set. Due to this, there is a possibility for the 

admittance trajectory to reach any aA  point in the right half-plane. The initial stretch of the 

trajectory always goes along a circle from 1C  set designated as 1 in the Fig. 1.7. Depending on 

the thickness of the first layer, transition of the trajectory into one of the circles of the 2C  set can 

occur at any point of circle 1 . It is evident from the picture, that the circle designated as 2 , 

confines the area into which the admittance trajectory of a two-layer system can get. Similarly, 

circle 3 of the 1C  set limits the area of admittance values which can be obtained through a three-

layer system. Thus, increasing the number of layers, we can always obtain any sought value of 

the input admittance. 

 

 
Fig. 1.6: Design of antireflection coating with the help of admittance phase plane. 

 

The established result can be formulated as a theorem. 

Theorem 1.1 There exits a multiplayer coating having any pre-set amplitude reflectance at any 

pre-set wavelength. 
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Fig. 1.7: Admittance trajectories of two-component multilayer coating 

 

 

1.3 Some common properties of multilayer coatings 

 

Multilayer optical coatings have a number of common properties whose appreciation proves 

useful in solving numerous applied problems of multilayer optics. Great is the contribution of    

P. G. Kard in studying these properties. The results of his research in this field have been 

summed up in his book published in 1971, which is of no less importance nowadays. Here we 

will consider only most essential properties from the point of view of applied optics. We will 

employ a sufficiently simple but rather a common approach in establishing these properties, 

which, in itself, is useful in solving a number of problems of multilayer optics. In this section 

formulas are deduced for transmittance and reflectance of two multilayer systems combination. 

They assist in investigating many essential types of multilayer coatings, such as multilayer 

interference filters, for example. 
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1.3.1 The relation between the characteristic matrix and spectral coefficients of a 
multilayer coating 

 

In this subsection we will establish simple relations connecting the characteristic matrix 

with multilayer system amplitude transmittance and reflectance for waves passing in the straight 

and reverse direction (i.e., from the substrate to the outer space). These relations make the basis 

for almost all further results of the section. 

We will make simultaneous deductions for both cases of polarization. As shown in the 

previous section, the characteristic matrix connects field components on the boundaries of a 

multilayer coating with the outer space and the substrate: 

( , ) (0, )
.

( , ) (0, )
a

a

u z k u k
M

z k k
   

=   
  v v

                                               (1.3.1) 

If we set the initial conditions in the right part of (1.3.1) 

(0, ) 1,         (0, ) ,su k k q= =v                                             (1.3.2) 

then we obtain in the left part of (1.3.1) the values which enter formulas (1.1.17) for the 

amplitude transmittance and reflectance: 

2( ) ,
( , ) ( , )
( , ) ( , )( ) .
( , ) ( , )

a

a a a

a a a

a a a

qt k
q u z k z k
q u z k z kr k
q u z k z k

=
+
−

=
+

v
v
v

                                       (1.3.3) 

Let us express ( , ),  ( , )a au z k z kv  from (1.3.3) through the amplitude coefficients: 

(1 )1( , ) ,         ( , ) .a
a a

q rru z k z k
t t

−+
= =v                              (1.3.4) 

Substituting (1.3.2) and (1.3.3) into (1.3.1), we will obtain 

1
1

.
(1 )a s

r
t M

q r q
t

+ 
   

=   −    
 

                                               (1.3.5) 

Let us now introduce the amplitude transmittance and reflectance for the wave incident 

from the substrate onto the multilayer coating. The angle of incidence is assumed to be equal to 

sγ , that is the value of the transmittance angle at which the wave passes in the substrate when the 

light is incident from the outer space at angle aγ . 
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For brevity, let us call these coefficients amplitude transmittance and reflectance in the 

reverse direction and designate them as 't  and 'r . 

The 't  and 'r  coefficients can be found similarly to the way the formulas (1.1.17) were 

obtained in section 1.1. We should normalize the field with respect to the transmitted wave 

amplitude. Now it is a wave passing in the outer space at the aγ  angle in the direction of the 

coordinate z  growth. For this wave aq u= −v . So, the boundary field conditions will be set now 

at point az z=  in the following form: 

( , ) 1,         ( , ) .a a au z k z k q= = −v                                          (1.3.6) 

If (0, ),  (0, )u k kv  are corresponding values of the field components at the boundary with 

the substrate, then the 't  and 'r  coefficients will be expressed similarly to formulas (1.1.17): 

2
' ,

(0, ) (0, )
(0, ) (0, )

' .
(0, ) (0, )

s

s

s

s

q
t

q u k k
q u k k

r
q u k k

=
−

+
=

−

v
v
v

                                               (1.3.7) 

Let us express (0, ),  (0, )u k kv  from (1.3.7) through the amplitude coefficients in the 

reverse direction: 

( ' 1)1 '(0, ) ,         (0, ) .
' '

sq rru k k
t t

−+
= =v                                    (1.3.8) 

Substituting (1.3.6) and (1.3.8) into (1.3.1), we obtain: 

1 '
   1 ' .

( ' 1)
'

sa

r
tM

q rq
t

+ 
  

=    −−     
 

                                               (1.3.9) 

It is convenient, for further use, to introduce two matrices: 

1   1 1   1
,         .a s

a a s sq q q q
   

= =   − −   
Q Q  

With their help, equation ( 1.3.5) is written down as 

1
1

,
0a s

t
r
t

 
   
   
    
 

Q = MQ  

and equation ( 1.3.9) as 
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'
0 ' .
1 1

'

a s

r
t

t

 
  
  
    
 

Q = MQ  

Now we can write both these equations into one matrix equation: 

1 '0 1
' .

11 0
'

a s

r
t t
r
t t

   
   
   
      
   

Q = MQ  

Let us rewrite it in the following form: 
1

1

1 '0 1
' .

11 0
'

a s

r
t t
r
t t

−

−

  
  
  
    
  

= Q MQ                                          (1.3.10) 

Let us designate the left matrix product as C . Finding the inverse matrix and multiplying 

the matrices then, we obtain 

1 '

,
1

r
t tC
r
t t+

 − 
=  
  
 

                                                     (1.3.11) 

(1.3.11) where t+  stands for the value 

.
' '
tt

tt rr
+ =

−
                                                       (1.3.12) 

In radiophysics, similar C  matrices are customarily called transfer matrices. We will 

stick to the term in the multilayer optics. It presents no special difficulty to analyze the physical 

meaning of the C -matrix. Assume that AE -amplitude wave is incident from the outer space side. 

For the sake of simplicity, let us consider a normal incidence case. The amplitudes of the 

transmitted and reflected waves TE  and TE  are connected with AE  by the equations 

,         .T A R AE tE E rE= =  

From here we obtain 

1 ,         .T T R T
rE E E E

t t
= =                                             (1.3.13) 

These equations are equivalent to the following matrix equation 
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.
0

A T

R

E E
C

E
   

=   
  

                                                   (1.3.14) 

Let now an AE ′  amplitude wave is simultaneously incident from the substrate side, and 

TE ′  and RE ′  are corresponding amplitudes of the transmitted and reflected waves (see Fig. 1.8). 

Similarly to (1.3.13) 

1 ',         .
' 'A T R T

rE E E E
t t

′ ′ ′ ′= =                                            (1.3.15) 

Let us find the matrix inverse to C -matrix. It is equal to 

1

' ' '
' ' .

1
' '

tt rr r
t tC
r
t t

−

− 
 

=  
 − 
 

 

Applying it, equations (1.3.15) can be written down as 

1 0
.R

TA

E
C

EE
−

′   
=   ′′   

                                                   (1.3.16) 

Multiplying both parts of (1.3.16) by the C -matrix, we obtain 

0
.R

T A

E
C

E E
′  

=   ′ ′   
                                                    (1.3.17) 

Due to the superposition principle, the fields considered above, add up. Analytically, it is 

equivalent to the addition of equations (1.3.14) and (1.3.17). As a result, we obtain 

.A R T

R T A

E E E
C

E E E
′ +   

=   ′ ′+   
                                                    (1.3.18) 
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Figure 1.8: Determination of transfer matrix 

 

Let us note that AE  and R TE E′+  are amplitudes of the waves passing in the outer space 

in the negative and the positive directions of the z -axis, respectively, and R TE E′ +  and AE′  are 

amplitudes of similar waves in the substrate. Equation (1.3.18) establishes a connection between 

these amplitudes. Thus, the C -matrix describes the transference properties of the multilayer 

coating in the discussed sense. 

Equation (1.3.10) is written down with the help of the transfer matrix in the form 
1 .a s
−C = Q MQ                                                   (1.3.19) 

Hence, we obtain the expression for the characteristic matrix of the multilayer coating 

through its transfer matrix, and, thus, through the amplitude transmittance and reflectance 

coefficients for the direct and reverse waves: 
1.a s
−M = Q CQ                                                   (1.3.20) 

 

1.3.2 Relations between spectral characteristics for the direct and reverse waves 
 

Let us note, first of all, that irrespective of the fact whether the layer is absorbing or non-

absorbing, the determinant of its characteristic matrix (see (1.2.9)) is always equal to 1. So this is 

also valid for the determinant of the characteristic matrix of the multilayer coating: 

det . M =1                                                   (1.3.21) 

It follows from (1.3.19) due to (1.3.21) that 
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1 detdet det det .
det

s
a s

a

− =
QC = Q Q
Q

                                     (1.3.22) 

Calculating the determinants entering the equations (1.3.22), we obtain 

.s

a

qt
t q
′
=                                                         (1.3.23) 

Let us further assume that both the substrate and the outer space are non-absorbing. The 

transmittances for the waves passing directly and reversely are determined by the equations 

2 2,         .s a

a s

q q
T t T t

q q
′ ′= =  

It follows from (1.3.23) that T T ′= . Thus, the following property is revealed: 

Property 1. Transmittances for the waves passing directly and reversely through a multilayer 

coating, coincide. 

If all layers of a multilayer coating are non-absorbing, equality of the reflectances for the 

directly and reversely passing waves follows from Property 1: R R′= . However, this equation is 

not valid in the general case of the absorbing layered medium. 

Of the energy equations 

1,         1.T R A T R A′ ′ ′+ + = + + =  

and Property 1 only the following equality is valid 

.R A R A′ ′+ = +  

As was shown by P.G.Kard (1971), absorbing multilayer coatings featuring significant 

differences between reflectances in direct and reverse directions may exist. This property can be 

employed to design asymmetric mirrors for reflecting interferometers (Troitski, 1985). 

Amplitude transmittance and reflectance are complex values. Let us write them down as 

,         .i it e r eδτ ρ ∆= =  

The values δ  and ∆  are known as phase changes on transmission and reflection. They 

depend on the wavenumber k  (or the wavelength λ ) and are essential spectral characteristics of 

multilayer coatings. 

Let us designate as δ ′  and ′∆  the phase changes on transmission and reflection for the 

wave passing in the reverse direction. 

Since the right part of (1.3.23) is a real number, it follows from the equation that 

.δ δ ′=                                                          (1.3.24) 
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Let us now assume that a multilayer coating is non-absorbing. The phase thicknesses of 

each layer cosj j j jkn dϕ γ=  are real numbers, so elements of the principal diagonals of the 

characteristic matrices are real numbers, and the elements of the subsidiary diagonals are 

imaginary numbers. By multiplying these matrices, it is easy to see that the 11m  and 22m  

elements of the characteristic matrix of the whole coating are real numbers, while 12m  and 21m  

are imaginary numbers. 

Calculating the product of the matrices in the right part of (1.3.19), we obtain for     

matrix C : 

11 12

21 22

1 ,
2

C C
C

C C
 

=  
 

 

21
11 11 22 12 ,s

s
a a

q mC m m q m
q q

   
= + + +   
   

 

21
12 11 22 12 ,s

s
a a

q mC m m q m
q q

   
= − − −   
   

 

21
21 11 22 12 ,s

s
a a

q mC m m q m
q q

   
= − + −   
   

 

21
22 11 22 12 .s

s
a a

q mC m m q m
q q

   
= + − +   
   

 

Taking account of the above property of the characteristic matrix elements we see, that 

the elements on the principal diagonal of matrix C  are conjugate complex numbers. Elements on 

the subsidiary diagonal are also conjugate complex numbers. It means that 
*

* *

1 1  ,         .r r
tt t t+

′
= − =                                            (1.3.25) 

The second equation gives rise to the following relation between the phase changes on 

reflection in direct and reverse directions: 

2 .π δ′∆ = −∆ +                                                   (1.3.26) 

Let us sum up the obtained results. 

Property 2. In case of a non-absorbing multilayer coaling for phase changes on transmission 

and reflection, there exist relations (1.3.24) and (1.3.26). The relation (1.3.24) is valid with the 

absorbing layers, too. 
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1.3.3 Transmittance and reflectance of the combination of two multilayer subsystems 
 

Assume, that a multilayer coating is obtained through uniting two subsystems of layers, 

designated as 1 and 2, with a spacer layer having thickness d  and refractive index n  (see Fig. 

1.9). Let us introduce the amplitude transmittance and reflectance for the waves passing in direct 

(from the outer space to the substrate) and reverse (from the substrate to the outer space) 

directions. These coefficients will be, respectively, designated with 1 and 2 indices. For the sake 

of certainty, in setting the amplitude coefficients of subsystems 1 and 2, we consider that 

subsystem 1 is framed by homogeneous media with refractive indices sn  and n  and subsystem 2 

is framed by homogeneous media with refractive indices n  and an . The n -refractive index 

medium for subsystem 1 plays the part of the outer space, and that of the substrate for   

subsystem 2. The wave angles in all media are determined by the Snell law: 

sin sin sin .s s a an n nγ γ γ= =  

Let us find expressions for the amplitude transmittance and reflectance of the multilayer 

coating through the amplitude coefficients of its subsystems. 

Let 1M  and 2M  be characteristic matrices of subsystems 1 and 2, and pM  is a characteristic 

matrix of the spacer layer. The product of these matrices gives characteristic matrix of the 

multilayer coating 

2 1.pM M M M=                                                    (1.3.27) 

Let us now express matrices M , 2M , 1M  through the corresponding transfer matrices. 

According to (1.3.20), 
1.a s
−M = Q CQ  

Similarly 
1 1

2 2 1 1,         .a s
− −M = Q C Q M = QC Q  

where 1,2C  are transfer matrices of subsystems 1 and 2, and Q  is a matrix similar to sQ  and aQ  

for the n -refractive index medium: 

1 1
.

q q
 

=  − 
Q  

Here cosq n γ=  in the S-case and / cosq n γ=  in the P-case. 
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Figure 1.9: Multilayer coating obtained by combining two multilayer subsystems 

 

Substituting expressions for matrices M , 2M , 1M  in (1.3.27), reducing both parts of the 

resulting equation by aQ  and 1
s
−Q  we have: 

1
2 1.pC M C−C = Q Q                                                    (1.3.28) 

Let us write down explicitly the characteristic matrix of the spacer layer: 

cos sin
.

sin cos
p

i
qM

iq

ϕ ϕ

ϕ ϕ

 
 =   
 

 

Here, coskn dϕ γ=  is a phase thickness of the spacer layer. 

The inverse matrix 1−Q  is equal to: 

1

11
1 .

12 1

q

q

−

 
 
 =
 

− 
 

Q  

Multiplying the three middle matrices in (1.3.28) by each other, we obtain: 

1 0
.

0

i

p i

e
M

e

ϕ

ϕ
−

−

 
=  
 

Q Q                                              (1.3.29) 

The transfer matrices 1C  and 2C  in (1.3.28) are expressed through the subsystem 

amplitude coefficients using similar (1.3.11) formulas: 
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1 2

1 1 2 2
1 2

1 2

1 21 2

1 1

,         .
1 1

r r
t t t t

C C
r r
t tt t+ +

′ ′   − −   
   = =
   
   
   

 

where 1t
+  and 2t

+  look similar to (1.3.12). So, taking account of (1.3.29), the equation (1.3.28) is 

written down in the form: 

2 1

2 2 1 1

2 1

2 2 1 1

1 11
0

1 1 10

i

i

r rr
t t t tet t

r r re
t t t t t t

ϕ

ϕ−

+ + +

′ ′   ′  − −−          =                   

                           (1.3.30) 

In order to express the t  and r  amplitude coefficients, it is sufficient now to find the first 

column of the matrix product in the right part of (1.3.30). We will obtain then: 

( )

1 2

1 2

2 1 2 2 2 2

1 2

1 ,

,

i i

i i

e r r e
t t t

r e r t t r r er
t t t

ϕ ϕ

ϕ ϕ

−

−

′−
=

′ ′+ −
=

 

and get from here the final expressions for t  and r : 

1 2
2

1 2

,
1

i

i

t t et
r r e

ϕ

ϕ

−

−=
′−

                                                                (1.3.31) 

( ) 2
2 1 2 2 2 2

2
1 2

.
1

i

i

r r t t r r e
r

r r e

ϕ

ϕ

−

−

′ ′+ −
=

′−
                                             (1.3.32) 

Note, that expressions (1.3.31), (1.3.32) are of the most general character. They are valid 

for both field components. Both multilayer subsystems and the spacer layer can be absorbing. 

We can consider the combination of two multilayer subsystems without spacer layer 

between them. In the latter case, ϕ  is held equal to zero in (1.3.31) and (1.3.32). 

Now we will obtain expressions for the energy transmittance and reflectance coefficients. 

Let us introduce the transmittances and reflectances for subsystems 1 and 2: 

2 2 2 2
1 1 1 1 2 2 2 2,         ,         ,         ,s

a

q qT t R r T t R r
q q

= = = =  

From (1.3.31) we obtain 
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( )1 2

2 2
2 1 2 1 2

2 22 2
1 2 1 21 1

ss

i i
a a

q t tq TTT t
q q r r e R R eϕ ϕ− ′∆ +∆ −

= = =
′− −

                    (1.3.33) 

Here 1∆  and 2′∆  are phase changes on reflection from subsystems 1 and 2 at the side of 

the spacer layer. Let us designate 

( )1 2
1 2 .
2

θ ϕ′= ∆ + ∆ −  

It can be easily checked that the square module in the denominator in (1.3.33) is equal to 

1 2 1 21 2 cos 2R R R R θ+ − . So, the expression (1.3.33) for the transmittance of the coating is 

transformed into 

1 2

1 2 1 21 2 cos 2
TTT

R R R R θ
=

+ −
                                           (1.3.34) 

In order to simplify the final expression for the reflectance of the coating, let us assume 

multilayer subsystem 2 non-absorbing. In this case, in accordance with the first equation in 

(1.3.25) and Property 2 (equation (1.3.26)), 

( )2 222
1 2 2 2

2

.iitt t r r e e
t

δ ′∆ +∆
+

′ ′− = = = −  

So the numerator in (1.3.32) can be written down as 
( )1 22 2

2 1
ie R R e ϕ′∆ +∆ −∆  −  . 

The square module of the value is equal to 1 2 1 22 cos 2R R R R θ+ − . Taking this into 

account, we obtain the following expression for R : 

1 2 1 2

1 2 1 2

2 cos 2
1 2 cos 2
R R R R

R
R R R R

θ
θ

+ −
=

+ −
                                           (1.3.35) 

Expressions (1.3.34), (1.3.35) form the basis for a design method of effective interfaces 

(see Smith, 1957). The expressions are also widely applied for analyzing important types of 

multilayer coatings, including mirrors and filters. 
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1.4 The multilayer coatings optical properties: impact of variations in the layer 
parameters 

 

The subject matter of this section primarily deals with an impact of the errors in the 

multilayer coating parameters on its spectral properties. As a rule, the errors are small enough, so 

it is possible to estimate the influence of the changes in individual parameters by calculating the 

spectral coefficient derivatives with respect to the corresponding parameter. The first item of the 

section asserts there are sufficiently simple algorithms allowing to calculate spectral coefficient 

derivatives very precisely and of low calculation efforts. The significance of this result goes 

beyond the limits of this section. The possibility of an absolutely precise and fast calculation of 

spectral coefficients derivatives is of vital importance for design methods of synthesis of 

multilayer coatings. 

The major problem in estimating the impact of errors on multilayer coating properties lies 

in the fact that the concrete values of parameter variations are unknown. Usually, we may 

suggest only some approximate mean values of errors. A question rises in this connection of how 

to estimate possible spectral coefficient variations. One of the ways is a multiple reiterated 

modelling of concrete values of the parameter errors and a subsequent calculation of 

corresponding spectral coefficients. However, the number of different options in modelling the 

errors is so great, that significant difficulties appear in interpreting the obtained results. In this 

section we consider another approach to the estimation of the error impact (Grishina and 

Tikhonravov, 1985). 

In a number of cases reliable quality conclusions can be made concerning the error 

influence on the spectral properties of coatings of various types. Here we discuss some general 

results to this effect. 

 

1.4.1 Spectral coefficients derivatives with respect to layer parameters 
 

Let m  be the number of layers. In a common case, such a multilayer coating is described 

by 3m -parameters: layer thicknesses jd , refractive indices jn , and the extinction coefficients 

jκ . Note, that it is more convenient sometimes to consider complex refractive indices 

j j jn n iκ= − , than refractive indices and extinction coefficients separately. 



59 

 

Let us designate one of the coating parameters as x  and a spectral coefficient as ϕ . In 

order to find a spectral coefficient derivative with respect to x , we can calculate the spectral 

coefficient with the changed parameter value of x x+ ∆  and make use of approximate formula 

( ) ( ) .
x x x

x x
ϕ ϕϕ + ∆ −∂

=
∂ ∆

                                              (1.4.1) 

In order to find all derivatives in this way, it is necessary to make 3 1m +  calculations of 

the spectral coefficient, once for the initial values of the parameters and then 3m  times altering 

parameters one by one. 

Generally speaking, the smaller x∆ , the higher the accuracy of formula (1.4.1). However, 

any computer makes calculations with some final accuracy level. Due to this, the formula error 

can be significant: with x∆  decreasing, a relative calculation error in the numerator in (1.4.1) 

grows. The derivative calculation error proves to be most essential, if a relative change of the 

spectral coefficient at parameter variation is significant. 

Below we describe another way of calculating spectral coefficient derivatives permitting 

to carry out calculations with computer accuracy. Besides it is more economical from the point 

of view of computation time. Let us now turn to the matrix method (see Section 1.2). In order to 

determine the amplitude transmittance and reflectance it is necessary to: 

1. Form the characteristic matrices of the layers 

cos sin
.

sin cos

j j
jp

j j j

i
qM

iq

ϕ ϕ

ϕ ϕ

 
 =  
 
 

                                                     (1.4.2) 

where cos ,   cosj j j j j j jkn d q nϕ γ γ= =   in the S-case and / cosj j jq n γ=   in the P-case, 

and the jγ  angles are determined in compliance with the Snell law: 

sin sin .j j a an nγ α γ= =  

2. Find the characteristic matrix for the whole of the coating 

1 1 ... m mM M M M−= .                                                 (1.4.3) 

3. Calculate the amplitude coefficients through the M -matrix elements according to the 

formulas 

11 22 12 21

2 ,a

a s s a

qt
q m q m q q m m

=
+ + +

                                           (1.4.4) 
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11 22 12 21

11 22 12 21

.a s s a

a s s a

q m q m q q m mr
q m q m q q m m

− + −
=

+ + +
                                       (1.4.5) 

Let us first find spectral coefficient derivatives with respect to the layer thicknesses. The 

amplitude coefficients are composite functions of the layer parameters depending on them 

through the characteristic matrix elements. So, the amplitude coefficient derivatives are 

expressed through corresponding derivatives of the matrix elements. Differentiating (1.4.4). 

(1.4.5) we obtain 
2

11 22 12 21 ,
2 a s s a

j a j j j j

m m m mt t q q q q
d q d d d d

 ∂ ∂ ∂ ∂∂
= − + + + 

∂ ∂ ∂ ∂ ∂  
                                           (1.4.6) 

11 22 12 21(1 ) (1 ) (1 ) (1 ) .
2 a s s a

j a j j j j

m m m mr t q r q r q q r r
d q d d d d

 ∂ ∂ ∂ ∂∂
= − − + + − − + 

∂ ∂ ∂ ∂ ∂  
      (1.4.7) 

According to (1.4.3), the derivatives of the characteristic matrix elements are determined 

from the equation: 

1 1 1 ...  ... .j
m j j

j j

MM M M M M
d d+ −

∂∂
=

∂ ∂
                                     (1.4.8) 

Let us designate the matrix j jM d∂ ∂  as jD . Differentiating (1.3.2), we find 

sin cos
cos .

cos sin

j j
jj j j

j
j j j

i
M qD kn
d

iq

ϕ ϕ
γ

ϕ ϕ

 −∂  = =  ∂  − 

                             (1.4.9) 

Let us introduce two matrices 
2 1

,
2

(1 ) (1 )
.

(1 ) (1 )2

a
t

s a sa

a
r

s a sa

qt
q q qq

q r rt
q q r q rq

 
Ψ = −  

 
− − + 

Ψ =  − − + 

                                (1.4.10) 

With their help, expressions (1.4.6), (1.4.7) can be written down as 

,

.

r t
j j

r r
j j

t MT
d d

r MT
d d

 ∂ ∂
= Ψ  ∂ ∂ 

 ∂ ∂
= Ψ  ∂ ∂ 

                                                 (1.4.11) 

The symbol ( )rT ⋅  denotes here the trace of the matrix, which, according to the definition, is the 

sum of its diagonal elements. Multiplying the matrix 
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11 12

21 22

j j

j

j j

m m
d dM
m md
d d

∂ ∂ 
 ∂ ∂∂  =
 ∂ ∂∂
  ∂ ∂ 

 

by matrices (1.4.10), we prove the validity of the record (1.4.11). Substituting then (1.4.8) into 

(1.4.11) we obtain 

( )

( )

1 1

1 1

,

.

j j
r j t

j

j j
r j r

j

t T M D
d
r T M D
d

+ −

+ −

∂
= Ψ

∂

∂
= Ψ

∂

                                            (1.4.12) 

where 1 1 1,  ,  j j j
t rM + − −Ψ Ψ  denote the following matrix products: 

1
1 ... ,j

m jM M M+
+=                                                 (1.4.13) 

1
1 1 ... ,j

t j tM M−
−Ψ = Ψ                                              (1.4.14) 

1
1 1 ... .j

r j rM M−
−Ψ = Ψ                                              (1.4.15) 

Expressions (1.4.12) for the amplitude coefficients derivatives are absolutely accurate. It 

is easy to carry out calculations through a series of a certain type matrix products employing 

those expressions. Let us note that the matrix products (1.4.13) are obtained in the course of the 

coating characteristic matrix calculations, the matrix being necessary to find the amplitude 

coefficients proper. All the matrix products (1.4.14), (1.4.15) are calculated at a one-time pass 

along the layers of the coating. Due to this, the derivative calculation algorithm is highly 

economical. 

Calculating derivatives with respect to other parameters is implemented in a similar way. 

It is most convenient first to find the derivatives with respect to the complex refractive index. It 

evidently results in similar (1.4.12) expressions: 

( )

( )

1 1

1 1

,

.

j j
r j t

j

j j
r j r

j

t T M N
n
r T M N
n

+ −

+ −

∂
= Ψ

∂

∂
= Ψ

∂





                                            (1.4.16) 

were jN  are derivatives of the layer characteristic matrices with respect to jn . In calculating 

these derivatives, it should be taken into account that the jγ  angles are implicitly dependent on 

jn . So, it is better to preliminary represent jϕ  and jq  as follows 
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( )1 2
2 2 ,
jj jk n dϕ α= −  

( )1 2
2 2
jjq n α= −    (for the S-case), 

( )
2

1 2
2 2

j

j

j

n
q

n α
=

−





   (for the P-case). 

After a number of non- complicated transformations j jM n∂ ∂  derivatives take the form 

2
2

10cos
cos cos

1 0

j j j
jj j

j j j j

M d qN D i
n n

ϕ
γ γ

 −∂  = = +  ∂  
 

 

 

for the S-case, while for the P-case they take the form: 

( ) 22
2

10cos
1 tan

cos cos
1 0

j j j
jj j j

j j j j

M d qN D i
n n

ϕ
γ

γ γ

 −∂  = = + −  ∂  
 

 

 

where jD  is a matrix determined by the expression (1.4.9). 

As j j jn n iκ= − , the amplitude coefficients derivatives with respect to the real parameters 

,  j jn κ  are connected with the derivatives (1.4.16) through the simplest expressions: 

,           ,

,       .

j j j j

j j j j

t t r r
n n n n
t t r ri i

n nκ κ

∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
= − = −

∂ ∂ ∂ ∂

 

 

                                 (1.4.17) 

It is very easy to express the transmittance and reflectance derivatives most frequently 

required in calculations, through amplitude coefficient derivatives. Since 2 *R r rr= = , then. 

*
* *2Re .

j j j j

R r r rr r r
d d d d

 ∂ ∂ ∂ ∂ = + =  ∂ ∂ ∂ ∂  
 

Similarly, 

*2 Re .s

j a j

qT tt
d q d

 ∂ ∂ =  ∂ ∂  
 

Other transmittance and reflectance derivatives are expressed in exactly the same way. 

Taking account of (1.4.17), we obtain 
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* *

* *

2 Re ,           2 Re ,

2 Im ,         2 Im .

s

j a j j j

s

j a j j j

qT t R rt r
n q n n n

qT t R rt r
q n nκ κ

   ∂ ∂ ∂ ∂   = =   ∂ ∂ ∂ ∂      
   ∂ ∂ ∂ ∂   = =   ∂ ∂ ∂ ∂      

 

 

 

Note in conclusion, that higher derivatives of multilayer coating spectral coefficients can 

be obtained following this pattern. 

 

1.4.2 Impact of the layer parameter errors on the multilayer coatings spectral 
coefficients: probability assessment method 

 

Let us note that the very values of the spectral coefficient derivatives give important 

information on the nature of error influence on the coating spectral properties. Errors of the same 

value can grow in significance wherever the derivatives are greater. Spectral coefficient 

derivatives depend on the wavelength (the wavenumber), and thus are themselves certain 

spectral characteristics of a coating: the influence of the errors will be stronger in the spectral 

band where these derivatives are greater. 

At the same time, the set of derivatives cannot of itself give sufficient representation of 

the total influence of all possible errors, since, first, the changes caused by the errors interact in a 

very complicated way, and, second, the concrete values of the errors are frequently unknown in 

advance. 

An aggregated influence of the errors can be taken account of by putting down the Taylor 

expansion of the spectral coefficient increments. For reasons of certainty, let us further consider 

the transmittance coefficient. Let us also hold all layers non-absorbing, i.e., consider dependence 

of T  on 2m  parameters - layer thicknesses and refractive indices. Let 0 ( )T k  be a transmittance 

corresponding to some given set of parameters 1 1,  ... ,  ,  ,  ... ,  m md d n n . Let us designate the 

thickness and refractive index variations of the j -th layer ,  j jξ η . As a rule, these variations 

(errors) are small, and the related transmittance coefficient change approximates to a high degree 

of accuracy by a segment of the Taylor series: 
2 2 2

0

1 1 , 1

1( ) ( ) ( ) 2 .
2

m m m

j j i j i j i j
j j i jj j i j i j i j

T T T T TT k T k T k
d n d d n n d n
ξ η ξ ξ ηη ξη

= = =

 ∂ ∂ ∂ ∂ ∂ ∆ = − ≈ + + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  
∑ ∑ ∑   

(1.4.18) 
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If the concrete values of the errors in the layer parameters were known, we could find the 

corresponding changes of the coefficients from the known coefficient derivatives using (1.4.18)-

type formulas. However, we can talk only about some statistical level of errors. 

Errors in the layers parameters are caused by numerous different factors. Those are 

monitoring methods errors, deviations in the parameters of materials used for sputtering, degree 

of cleanliness of the chamber, the temperature of the substrate, etc. Errors caused by various 

factors are practically random. It is widely known that in similar situations a distribution of the 

summed up errors is quite accurately described by the normal distribution law. So, let us 

consider each ,  j jξ η  as distributed in accordance with the normal law with zero mathematical 

expectation and some given standard deviation. Assume also that errors in the parameters of 

individual layers are noncorrelated. This assumption best corresponds to deposition using quartz 

monitoring method. Let us designate the standard deviations of errors in the layer thicknesses 

,d jσ , standard deviations of errors in the refractive indices ,n jσ . 

A change in the transmittance ( )T k∆  depends on ,  j jξ η  and, consequently, is a random 

value. The ( )T k∆  distribution can be characterized by a mathematical expectation and a 

standard deviation. Both these values also depend on the wavenumber k . Let us designate them 

as ( )TM k∆  and ( )TS k∆ , respectively. For random function of the (1.4.18)-type, general formulas 

can be deduced, expressing their mathematical expectation and the standard deviation through 

the ,  j jξ η  standard deviations: 

  ,
2
1)(
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2
,2

2
2
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2

∑
=

∆ 
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



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∂
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∂
∂
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j
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                  (1.4.20) 

The values for , ,,  d j n jσ σ  in (1.4.19), (1.4.20) characterize the error levels in the 

thicknesses and the refractive indices. The ( )TM k∆  and ( )TS k∆  functions calculated on their 

basis allow to vividly characterize possible deviations of transmittance from the calculated 
0 ( )T k  curve. This characteristic of the most likely values of ( )T k  is provided by the curve of 
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transmittance mathematical expectation 0 ( ) ( )TT k M k∆+  with the standard deviation corridor 

0 ( ) ( ) ( )T TT k M k S k∆ ∆+ ±  marked on the figure. 

 

 
Figure 1 .10: Corridor of the most likely trancmittance values of four-layer 

antireflection coating: calculated transmittance 0 ( )T k  (solid curve), mathematical 

expectation 0 ( ) ( )TT k M k∆+  (dashed curve) 

 

Figure 1 .10 illustrates the error sensibility of four-layer antireflection coating at normal 

light incidence. The calculated parameters have the following values: odd layers refractive 

indices are equal to 2.00, while even layers to 1.45, the layer thicknesses are 16.2, 33.6, 141.8, 

93.3 nm. The substrate refractive index is equal to 1.52. The following values were assumed for 

possible error standard deviations in the parameters of the layers: 

,1 ,2 ,3 ,42 ,  5 ,  0.02d d d d nnm nmσ σ σ σ σ= = = = =  for all layers. Thus, errors in layer thicknesses 

are about 4 - 6% of the thicknesses of the second through fourth layers and 12% of the first layer 

thickness. Figure 1.10 provides a calculated transmittance of the antireflection coating 0 ( )T k  

(solid curve) and its mathematical expectation 0 ( ) ( )TT k M k∆+  (dashed curve) with the marked 

corridor of the standard deviation. This corridor characterizes a possible deviation of the 

transmittance from the calculated curve. 

Note, that expressions (1.4.19), (1.4.20) were obtained in the assumption of noncorrelated 

errors in parameters of different layers. This assumption is quite justified in coating production 
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with quartz resonator monitoring. It is well known that in employing the optical monitoring 

methods error autocompensation often occurs in layer thicknesses, that is the latter are not 

independent random values. The probability approach described above can be expanded to 

include such cases by introducing a correlation matrix for random variations of layer thicknesses. 

 

1.4.3 Multilayer coating spectral properties: influence of separate layer parameter 
variations 

 

In this subsection we will obtain some qualitative conclusions concerning the influence of 

separate parameter variations on multilayer coating properties. A number of formulas describing 

the energy coefficients changes with a change in a thickness or refractive index of a layer serve 

as the basis for these conclusions. To simplify the considerations, we will not supply a detailed 

deduction of the formulas but give its brief explanation instead. 

Let us single out some layer of a non-absorbing multilayer coating and designate its 

thickness as d  and its refractive index as n . The set of layers preceding the layer in question 

will be termed subsystem 1, while the set of layers following it will be referred to as subsystem 2 

(see Fig. 1.9 in the previous section). Further we will use the same designations as in Section 1.3: 

spectral coefficients of subsystems 1 and 2 are designated with proper indices, spectral 

coefficients and phase changes on the reflection for wave propagating in the reverse direction 

(i.e., from the substrate to the outer space) are marked with a prime. 

The initial expressions for the formulas deduced below are those (1.3.31) and (1.3.32) 

from the previous section. With their help amplitude coefficient increments (and then energy 

coefficient increments) can be expressed through the inner layer parameter change. It ought to be 

taken into account that with a change of the refractive index or introduction of a small absorption 

in the layer not only phase thickness ϕ  changes, but the subsystem amplitude coefficients 

change too, due to the change of parameters of the framing media. Going through rather a 

tedious procedure of calculations, we will find as a result that with a change of the refractive 

index of the singled out layer by n∆ , reflectance and transmittance will get increments 

( ) ( )
2

1 2 1 2
2 1

1 2 1 2

1 12 2 sin 2 sin sin sin .
T R R R RR T n

nTT R R
ϕ θ ϕ ϕ ϕ

  + + ′∆ = −∆ = ∆ + −∆ + −∆  
    

    (1.4.21) 

Here, like in Section 1.3, ( )1 2
1 2 .
2

θ ϕ′= ∆ + ∆ −  
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Energy coefficient changes caused by taking into account small absorption in the 

particular layer under consideration are equal to 

( ) ( )
2

1 21 2
1 2

1 2 1 2

12 sin sin sin .
R RR RTT

n TT T T
κ ϕ ϕ ϕ ϕ

  − ′∆ = − + −∆ + −∆  
    

                        (1.4.22) 

( ) ( )2 12 1 1 2
2 1

1 2 2 1

(1 )2 (1 ) cos (1 ) cos sin .
R RR R R R RTR R R

n TT T T
κ ϕ ϕ ϕ ϕ

  − − − ′∆ = + − −∆ − − −∆  
    

        

(1.4.23) 

Parameter κ  in (1.4.22), (1.4.23) is an imaginary part of the refractive index (extinction 

coefficient) of the given layer. Taking account of small absorption in the layer, absorptance A  

differs from 0. Since, in our assumption, the other layers of the coating are non-absorbing, 

( )A T R= − ∆ + ∆  and we obtain from (1.4.22), (1.4.23) the following: 

( ) ( ){ }1 1 1
1

2 1 2 cos sin .TA R R
nT

κ ϕ ϕ ϕ= + + −∆                         (1.4.24) 

Lastly, with the change of the layer thickness by a small value, energy coefficients 

receive increments 
2

1 2

1 2

4 cos sin 2 .
T R R

T R d kn
T T

γ θ∆ = −∆ = ∆                              (1.4.25) 

Let us consider the conclusions following from (1.4.21) through (1.4.25). Factor 2T  is a 

part of the expression (1.4.21), where T  is transmittance for the whole system. So, variations of 

the refractive indices would tell but insignificantly on the spectral properties of a multilayer 

coating in the areas of high reflectance. This conclusion is further proved by experimental data: it 

is known that refractive indices deviations mostly tell on the position of boundaries for a high 

reflectance region, but practically do not influence on the R  value inside the region. 

Similarly, it follows from (1.4.22), (1.4.23) that small absorption in layers hardly changes 

the transmittance in high reflection regions, but results in a significantly more noticeable change 

of the reflectance since 1T R T∆ ∆  . As shown in (1.4.24), the same extinction coefficient of 

the layer causes a greater increase of A  with less transmittance of the subsystem following the 

absorbing layer. Thus, in mirrors, the greatest contribution into the total absorption will be made 

by outer layers. Note, lastly, that on certain conditions separate layers of a multilayer coating 

may happen to be highly absorbing even at small κ . It is connected with the fact that the ratio 

1T T , being a part of (1.4.24) may be great. Really, according to (1.3.34) 
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( )
2 2

22 21 1 2 1 2 1 2 1 2

.
1 2 cos 1 4 sin

T TT
T R R R R R R R Rθ θ

= =
+ − − +

             (1.4.26) 

As seen from (1.4.26), if θ  for any layer is divisible by π , and the reflectances from the 

framing subsystems are close to unit, the 1T T  ratio is large. Such layers serve as kind of 

resonators: the specified conditions for 1 2,  ,  R R θ  provide a resonant accumulation of the wave 

energy in the layer due to multiple reflections from its boundaries and phase condition 

1 2 2 0  (mod 2 ).ϕ π′∆ + ∆ − =  

It is exactly the situation that exists for the central layer of a narrow bandpass 

interference filter. So, even a small absorption of the material of the central layer brings about a 

significant deterioration of the filter properties. 

Let us turn now to formula (1.4.25). Note that if θ  is divisible by π , the layer thickness 

variations in a first approximation have no influence at all on the values of the transmittance and 

reflectance. This condition is satisfied at the central wavelength for all layers of quarter-wave 

dielectric mirrors and narrow bandpass filters. So, the deviations of spectral characteristics from 

the calculated characteristics can be primarily accounted for by the refractive indices variations 

and the absorption in the layers. 

Expression (1.4.25) supports a conclusion that layer thicknesses variations tell on the 

spectral characteristics significantly less in the high reflection region than in other regions. This 

fact is revealed in refining methods of multilayer coating synthesis. It turns out that multilayer 

mirrors used as starting designs in synthesis may significantly change the spectral characteristics 

beyond the reflection region due to layer thicknesses variations causing almost no changes of the 

R -value within the region. In this way edge filters, for instance, are synthesized. 

 

1.5 Multilayer periodic systems. Quarter-wave dielectric mirrors 
 

Multilayer periodic systems are of special interest primarily because they include quarter-

wave dielectric mirrors and multilayer interference filters contain periodic layer subsystems. The 

periodicity property allows to express the system characteristic matrix through Chebyshev 

polynomials. 

Due to a wide application of quarter-wave mirrors and interference filters, an in-depth 

study of their spectral properties, an analysis of the layer parameters errors impact, a research of 
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the influence of an absorption in dielectric layers are essential. Due to special structures of the 

above systems, approximate analytical expressions describing the dependence of their major 

spectral properties on the layer parameters are possible to obtain. These expressions are of great 

practical value since they provide an easy qualitative and quantitative analysis of mirror and 

filter properties. 

 

1.5.1 Characteristic matrix of a periodic multilayer system 
 

Let us consider a two-material periodic multilayer system consisting of repetitive layer 

pairs with 1n  and 2n  refractive indices and 1d  and 2d  thicknesses. Let us designate the number 

of periods as N . Thus the total number of the layers is equal to 2N . Layers can also be 

absorbing. In this case their complex refractive indices are denoted as 1n  and 2n . Let us 

designate the product of characteristic matrices making up a period as A . In the general case, 

taking account of (1.2.9), we have 

11 12
2 1

21 22

,
a a

A M M
a a
 

= =  
 

                                               (1.5.1) 

1
11 1 2 1 2

2

12 1 2 1 2
1 2

21 1 1 2 2 1 2

2
22 1 2 1 2

1

cos cos sin sin ,

sin cos cos sin ,

sin cos cos sin ,

cos cos sin sin ,

qa
q

i ia
q q

a iq iq
qa
q

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

= −

= +

= +

= −

 

where 1 1 1 1 2 2 2 2cos ,  cos ,kn d kn dϕ γ ϕ γ= =   

1 1 1 2 2 2cos ,         cos ,q n q nγ γ= =     (in the S-case), 

1 2
1 2

1 2

,            ,
cos cos

n n
q q

γ γ
= =

 

      (in the P-case). 

The characteristic matrix of the whole system equals the N -th power of the A  matrix: 

( )2 1 .N NM M M A= =                                                    (1.5.2) 

The Chebyshev polynomials allow to express the characteristic matrix elements with the 

help of the A -period matrix elements. Before we show it, let us define the Chebyshev 

polynomials and consider some of their properties. Strictly speaking, the polynomials we are 
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interested in are known as second-type Chebyshev polynomials. Since we are not going to tackle 

polynomials of any other type, we will further use only the short-version name for them 

everywhere, except in the definition. 

It is easiest to define the ( )nU a  Chebyshev polynomials of the second type with the help 

of the recurrent formula expressing an n -th order polynomial through the 1n −  and 2n −  order 

polynomials: 

1 2( ) 2 ( ) ( ).n n nU a aU a U a− −= −                                              (1.5.3) 

The two first polynomials are set as the initial values for the recurrent formula (1.5.3): 

0 1( ) 1,           ( ) 2 .U a U a a= =  

With the help of the formula (1.5.3) it is possible to find consequently a Chebyshev 

polynomial of any power. Let us write out few first ones: 
2

2
3

3
4 2

4
5 3

5

( ) 4 1,
( ) 8 4 ,
( ) 16 12 1,
( ) 32 32 6 .

U a a
U a a a
U a a a
U a a a a

= −

= −

= − +

= − +

 

Note, that all polynomials of the even power are even functions, while those of the odd 

power are odd functions. 

Let us emphasize a useful property of the second type Chebyshev polynomials. Let us 

introduce the function 

2

1( , )
1 2

F t a
ta t

=
− +

.                                                 (1.5.4) 

It turns out that, expanded into the Taylor series with respect to t , the function will reveal 

coefficients which are ( )nU a  polynomials: 

0
( , ) ( ) .n

n
n

F t a U a t
∞

=

=∑  

Due to this property, function (1.5.4) is known as a second type Chebyshev polynomial 

generating function. 

With the help of Chebyshev polynomials, the M -matrix, being the N -th power of the 

A -matrix, is expressed through the elements of the latter according to the formula 

11 1 2 12 1

21 1 22 1 2

( ) ( ) ( )
,

( ) ( ) ( )
N N NN

N N N

a U a U a a U a
M A

a U a a U a U a
− − −

− − −

− 
= =  − 

                     (1.5.5) 
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where the a -argument of polynomials is a half-sum of the diagonal elements of the A -matrix: 

11 22 .
2

a aa +
=                                                       (1.5.6) 

The simplest way to verify the result is to use the mathematical induction method. It is 

valid at 1N = , if 1( ) 0U a− = , which does not contradict to the recurrent formula (1.5.3). Assume 

that formula (1.5.5) is valid for the N -th power of the A -matrix, and let us prove that a similar 

formula is also valid for the 1N + -st power. Multiplying matrix (1.5.5) by A we obtain: 

( )
( )
1 1 11 2 12 1 21

21 1 2 2 1 22 2

2
,

2
N N N NN

N N N N

U a U a aU U
M A

a aU U U a U
− − − −+

− − − −

− − 
= =  − − 

g
g

                   (1.5.7) 

where 2 2
1 11 12 21 2 12 21 22,   a a a a a a= + = +g g . 

To reduce the record we omitted here the Chebyshev polynomial arguments and, besides, 

took account of equation (1.5.6). 

All the determinants of the layers characteristic matrices equal a unit. So is the 

determinant of any product of these matrices, the matrix A determinant, in particular. Thus, 

11 22 12 21 1.a a a a− =  

Expressing 12 21,   a a  from here, we transform the diagonal elements of matrix (1.5.7) into 

( ) ( )
( ) ( )

2
11 11 22 1 11 2 11 1 2 1

2
11 22 22 1 22 2 22 1 2 1

1 2 ,

1 2 .

N N N N N

N N N N N

a a a U a U a aU U U

a a a U a U a aU U U

− − − − −

− − − − −

+ − − = − −

− + − = − −
 

Now, with the recurrent formula (1.5.3) taken into account, the matrix (1.5.7) is written 

down in a way similar to (1.5.5): 

11 1 12 11

21 1 22 1

( ) ( ) ( )
.

( ) ( ) ( )
N N NN

N N N

a U a U a a U a
A

a U a a U a U a
− −+

− −

− 
=  − 

 

Thus, the validity of the formula (1.5.5) is proved by induction. 

Let us now turn our attention to the fact that in proving formula (1.5.5) we only made use 

of the A-matrix determinant’s equality to a unit. The specific content of A was not emphasized 

as important. Thus, expression (1.5.5) is valid for any periodic system with an arbitrary number 

of layers in a period. 
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1.5.2 Quarter-wave mirror properties at the central wavelength 
 

The A -matrix elements for a two-material periodic system are written out in (1.5.1) and 

the Chebyshev polynomial argument is equal to 

1 2
1 2 1 2

2 1

1cos cos sin sin .
2

q q
q q

α ϕ ϕ ϕ ϕ
 

= − + 
 

 

Let us find with the help of (1.5.5) amplitude transmittance and reflectance of quarter-

wave dielectric mirror at the central wavelength 0λ . Let absorption be lacking and incidence 

normal. Here in (1.5.1) we have 1 1 1 2 2 2 1 1 2 2,  ,  ,  kn d kn d q n q nϕ ϕ= = = = . By the definition of the 

quarter-wave mirror 

0
1 1 2 2 .

4
n d n d

λ
= =  

At the central wavelength 02k π λ=  and 1 2 2ϕ ϕ π= = . The A  matrix takes the form 

1

2

2

1

0

0

n
n

A
n
n

 − 
 =
 

− 
 

 

and the argument (1.5.8) turns to be equal to 

1 2

2 1

1 .
2

n na
n n

 
= − + 

 
 

Let us designate the ratio of refractive indices of even and odd layers as b : 

2

1

.
n

b
n

=  

Taking this into account, formula (1.5.5) gives 
1

1 2

1 2

0
.

0
N N

N N

b U U
M

bU U

−
− −

− −

 − −
=  

− − 
                               (1.5.8) 

Due to a specific form of Chebyshev polynomials argument ( )1 2a b b−= − + , the 

recording of the matrix elements can be significantly simplified. With this in view, let us 

consider the generating function (1.5.4). With ( )1 2a b b−= − +  it can be represented as two 

simple co-factors: 
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( ) 11 2

1 1 1 ,
1 11 bt b tt b b t −−

=
+ ++ + +

 

each of them easily expanding into a series: 

0

1
0

1 ( 1) ,
1

1 ( 1) .
1

m m m

m
k

k
k

k

b t
bt

t
b t b

∞

=

∞

−
=

= −
+

= −
+

∑

∑
 

By multiplying the sequences we obtain the expansion of the generating function (1.5.4): 

( )1 2

0 0
, 2 ( 1)  .n m n n

n m
F t b b b t

∞ ∞
− −

= =

  − + = −    
∑ ∑  

Due to the generating function property, the coefficients are Chebyshev polynomials. It 

follows from here that 

( )1 2 2

0
2 ( 1) ( 1)  ... .n m n n n n n

n
m

U b b b b b b
∞

− − − − +

=

   − + = − = − + + +   ∑  

Using the equation we obtain that in (1.5.8) 
1

1 2

1 2

( 1) ,
( 1) .

N N
N N

N N
N N

b U U b
bU U b

− −
− −

− −

− − = −

− − = −
 

Thus the matrix (1.5.8) has a very simple form: 

( ) 0
1 .

0

N
N

N

b
M

b

− 
= −  

 
                                                    (1.5.9) 

This expression is obtained for a 2N -layer mirror. In order to obtain a characteristic 

matrix of a quarter-wave mirror with an odd number of layers, it is necessary to finally multiply 

the matrix (1.5.9) on the left by the matrix of the last layer. 

This layer features the refractive index 1n , and its matrix at the central wavelength is 

equal to 

1

1

0
.

0

i
n

in

 − 
  − 

 

As a result we obtain the following expression for the characteristic matrix of the  

2 1N + -layer mirror: 
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1
1

1

0
( 1) .

0

N

N

N

ib
M n

ib n

+

−

 
 = −  
 
 

                                             (1.5.10) 

Amplitude transmittance and reflectance are obtained from (1.2.13), (1.2.14). We have 

for a 2N -layer mirror: 

( 1) 2 ,             ,
N N N

a a s
N N N N

a s a s

n n b n bt r
n b n b n b n b

−

− −

− −
= =

+ +
                               (1.5.11) 

and for a 2 1N + -layer mirror: 
2

1 1
2 2
1 1

( 1) 2
,             .

N N N
a s a

N N N N
s a s a

i n n n n b n b
t r

n n b n b n n b n b

−

− −

− −
= =

+ +
                               (1.5.12) 

Remember, that in (1.5.11), (1.5.12) 2 1b n n= is a ratio of an even layers refractive index 

and odd layers refractive index. 

Let us find what a phase change on reflection at the central wavelength is equal to. Let 

1b > , i.e., 2 1,  H Ln n n n= = . Note that a mirror with an even number of layers will have the outer 

layer refractive index Hn , while that with an odd number of layers Ln . With 1b >  and a 

sufficiently large N , the numerator in the expression (1.5.11) for r  is negative, and in the 

expression (1.5.12) it is positive. So the phase change for the 2N -layer mirror is equal to π , and 

that for a 2 1N + -layer mirror equals zero. With 1b <  the signs in the numerators for r  will 

change, but simultaneously, the refractive indices of the outer layers will change, too: the low 

ones will grow high, and vice versa. It means that quarter-wave mirrors at the central wavelength 

irrespective of the number of layers, will have the phase change equal to n  with the outer layer 

refractive index equal to Hn , and the phase change equal to zero with the outer layer refractive 

index equal to Ln . 

Let us determine now quarter-wave mirror reflectance at the central wavelength. Assume 

that first the number of layers is even and 1b > . From (1.5.11) we obtain 

( )
( )

22

2

1
.

1

N
a s

N
a s

n n b
R

n n b

−

−

 −
=  + 

                                         (1.5.13) 

It is worthwhile to represent the expression in the following approximate form: 
2

21 4 1 4 .
N

Na a L

s s H

n n nR b
n n n

−  
≈ − = −  

 
                               (1.5.14) 
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Passing from (1.5.13) to (1.5.14) we discarded all the terms containing 4Nb−  factor. It is 

easy to find the proof of it by subtracting (1.5.14) from (1.5.13). For the overwhelming majority 

of mirrors practically employed, the 4Nb−  value is negligibly small. For instance, for a 10-layer 

mirror with refractive indices 1.35Ln =  for odd and 2.30Hn =  for even layers 

4 20 52 10Nb b− − −= ≈ ⋅ . So, the approximate expression (1.5.14) gives a high accuracy value of 

reflectance. 

Similarly, with 1b < , that is with 1 2,  H Ln n n n= = , by discarding terms of the 4Nb−  

order, we obtain an approximate value for a 2N -layer mirror: 
2

21 4 1 4 .
N

Ns s L

a a H

n n n
R b

n n n
 

≈ − = −  
 

                               (1.5.15) 

With the same number of layers and the same high and low refractive indices expression 

(1.5.14) gives a greater value for R , as the outer space is usually the air and 1a sn n= < . Thus a 

mirror with a high refractive index of the outer layer has a higher reflectance. 

At an odd number of layers 2 1N + , through similar simplification procedures, we obtain 

in the case of 1 21 ( ,  )L Hb n n n n> = =  

22 2
211 4 1 4

N
N L L

s a s a H

n n n
R b

n n n n n
−  

≈ − = −  
 

                               (1.5.16) 

and in the case of 1 21 ( ,  )H Lb n n n n< = =  

2
2

2 2
1

1 4 1 4 .
N

Ns a s a L

H H

n n n n nR b
n n n

 
≈ − = −  

 
                               (1.5.17) 

In the second case, the refractive index of the odd layers is high and comparing (1.5.16) 

and (1.5.17) we can easily see that a high refractive index of the outer layer again reveals higher 

reflectance. 
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1.5.3 Width of the quarter-wave mirror high-reflectance zones 
 

Let us investigate the width of the quarter-wave mirror high-reflectance zones at the 

normal incidence and small deviations of the incidence angle from zero. For this purpose, let us 

consider the matrix product of the period in the general form for the oblique incidence case. Let 

the layers of the mirror at this subsection be non-absorbing, and, correspondingly, the layers 

refractive indices real. The parameters of the layers making up a period are connected through 

the equation 

0
1 1 2 2 .

4
n d n d λ

= =  

where 0λ  is a certain fixed wavelength (central wavelength, in accordance with acknowledged 

terminology). 

First of all, it is necessary to determine what mirror high-reflectance zones are and what 

their boundaries are. As is known, as the number of periods grows, the residual transmittance in 

the high-reflectance zones decreases, and the ( )R λ  curve takes ever more ∏ -shape form. So, it 

would be natural to agree to the following definition. 

 

Definition 1.1 Mirror high-reflectance zones are wavelength regions, where the transmittance 

tends to zero as the number of periods tends to infinity. The zone on the extreme right of the 

wavelength axis is perceived as the principal high-reflectance zone. 

 

Let us consider the Chebyshev polynomial argument in the expression for the system 

characteristic matrix. It depends on the wavelength of the incident light (being connected through 

the wavenumber k ) and on the incidence angle aγ  (through the 1γ  and 2γ  angles connected with 

aγ  by the Snell law). So further we will designate it as ( , )aa λ γ .  

Employing the Chebyshev polynomial properties, we can show that high-reflectance 

zones are determined by the condition 

( , ) 1.aa λ γ >                                                            (1.5.18) 

We will use this inequality as the basis for further analysis. 

First of all, let us investigate the position of high-reflectance zones at normal light 

incidence. This condition observed, 1ϕ  and 2ϕ  in the expression for a  coincide and are equal to 
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0 0
1 1 2 2

2 ,
4 2

kn d kn d
λ πλπϕ

λ λ
= = = =  

1,2q  parameters are equal to corresponding refractive indices. So 

2 20 01 2

2 1

1( ,0) cos sin .
2 2 2

n n
a

n n
πλ πλ

λ
λ λ

    = − +    
    

                            (1.5.19) 

It follows from (1.5.19) that ( ,0)a λ  cannot be more than a unit. Hence, the condition of a 

( ,0) 1a λ < −  must be observed in the high-reflectance zone, whose boundaries will be defined 

from the equation 

( ,0) 1a λ = −                                                       (1.5.20) 

Substituting (1.5.19) into (1.5.20) and expressing sine and cosine squares through a 

double angle cosine, we will obtain the following equation to determine the high-reflectance 

zone boundaries: 

( )

2 2
0 1 2 1 2

2
1 2

6cos .n n n n
n n

πλ
λ

+ −
=

+
                                           (1.5.21) 

Let us designate the value in the right part of (1.5.21) as ξ . It is easy to show that 1ξ > −  

( 1ξ = −  only at 1 2n n= ) and grows monotonously with a growing ratio of high and low refractive 

indices. For practically all the materials employed 0ξ < . The solution of equation (1.5.21) can 

be conveniently represented in the 0πλ λ  argument trigonometry circle (see Fig. 1.11). A bold 

solid line marks a part of the circle where condition ( ,0) 1a λ < −  is satisfied. 

Let us designate the upper and the lower boundaries of the high-reflectance zones at 

normal light incidence as uλ  and dλ , respectively. As follows from Fig. 1 .11, they are 

determined from the formulas 

0

0

,
(2 1) arccos( )

,
(2 1) arccos( )

u

d

m

m

πλ λ
π ξ

πλ λ
π ξ

=
+ − −

=
+ + −

                                         (1.5.22) 

where  
( )

2 2
1 2 1 2

2
1 2

6 .n n n n
n n

ξ + −
=

+
 

Formulas (1.5.22) do not depend on the order of high and low refractive index alteration. 

So, 1 2,  n n  in the expression for ξ  can be altered for ,  H Ln n .  
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These formulas describe the boundaries of all high-reflectance zones. For the principal 

high-reflectance zone m  equals to zero. 

With 1,  2,  ...m = formulas (1.5.22) determine the boundaries of the adjacent high-

reflectance zones, located on the wavelength axis to the left of the principal one. The width of 

the adjacent zones decreases fast as m  grows, and usually, only the first one of them is of any 

practical importance. A relative width of the principal zone is determined by the ratio 

arccos( ) .
arccos( )

u

d

λ π ξ
λ π ξ

+ −
=

− −
                                                 (1.5.23) 

 

 
Figure 1.11: On the determination of the high-reflectance zone boundaries 

 

Note, that, according to (1.5.22), (1.5.23), both the relative width and the ratio of the 

boundary wavelengths to the central one depend only on the  H Ln n ratio. Fig. 1.12 shows 

graphic dependence of  u dλ λ ,  0  uλ λ  and 0  dλ λ  on the ratio of the refractive indices within 

the range of  H Ln n  changes from 1 to 3. 

 



79 

 

 
Figure. 1.12: Correlation between the relative width of the principal 

high-reflectance zone and the ratio of high and low refractive indices 

 

Now, let us consider how the positions of high-reflectance zones change with incidence 

deviations from the normal. 

For every value of the aγ  the boundary wavelengths are found from the equation 

( , ) 1aa λ γ = −                                                       (1.5.24) 

Thus, equation (1.5.24) determines the boundary wavelengths as implicit functions of aγ . 

Omitting the intermediate stages, let us pass to the final expressions for the boundaries 

deviations from values at the normal incidence. Let us designate the upper and the lower 

boundary deviations as uλ∆  and dλ∆ ,  respectively. The formulas below are obtained in 

approximation of small incidence deviations from the normal. They are valid for all high-

reflectance zones of the mirror. We supply them simultaneously for the field S- and                   

P-components: 

( ) 2 2
2 2 2 2

0

1 1 1
4

H L H Lu u
a a

u H L H L

n n n n
n

n n n n
λ λ γ
λ πλ

 − ∆
= − + ±  
   

                     (1.5.25) 

(the positive sign before the second term in the square brackets corresponds to the S-case, while 

the negative sign stands for the P-case), 



80 

 

( ) 2 2
2 2 2 2

0

1 1 1
4

H L H Ld d
a a

d H L H L

n n n n
n

n n n n
λ λ

γ
λ πλ

 − ∆
= − +  
   

                      (1.5.26) 

(the positive sign before the second term corresponds to the P-case, while the negative sign 

stands for the S-case). 

It is easy to show that the first terms in square brackets (1.5.25), (1.5.26) are always 

greater than the second ones. Hence, , u dλ∆  are always negative. So, high-reflectance zones for 

both S- and P-waves shift into the short-wave part of the spectrum with the incidence angle 

deviating from the normal. 

In the S-case, the value of the upper boundary shift is smaller than that of the lower 

boundary shift. In the P-case, the situation is reverse - a high-reflectance zone becomes more 

narrow as aγ  grows. 

The high-reflectance zone upper boundaries for the S- and P-polarized waves shift into 

the short-wave part of the spectrum with aγ  growing at different velocities, featuring a greater 

velocity for P-polarized wave. This effect can be used to design light polarizers. As follows from 

(1.5.25), (1.5.26) the effect augments as the ratio of high and low refractive indices grows. 

The formulas (1.5.25), (1.5.26) do not only give a qualitative description of the high-

reflectance zones positions with the change of the light incidence. Within the range of 030  

incidence, an error in determining the boundary wavelength shifts do not exceed 5 10%−  

(Tikhonravov, 1983). 

 

1.5.4 Principal properties of a quarter-wave dielectric mirror in the proximity to the 
central wavelength 

 

The mirror properties are influenced by refractive indices errors, layer thicknesses errors, 

incidence angle deviations from the normal. Here we will consider the influences of this factors 

holding them small. Let us also consider wavelength deviations from the mirror central 

wavelength small. In the first approximation, the influence of all enumerated factors is inter-

independent and when investigating one, the others may be neglected as non-existent. 

A number of general qualitative conclusions related to the layer parameters errors 

influence on the mirror properties were obtained and presented in Section 1.4. It was noted, 

among other things, that thicknesses and refractive indices errors practically do not tell on the 
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value of the reflectance inside high-reflectance zones. Formulas (1.4.21)-(1.4.25) are 

significantly simplified for quarter-wave mirrors at the central wavelength. At 0λ λ= , the phase 

thickness of every layer is equal to 2π , the phase changes on reflection 
1r

ϕ  and 
2r

ϕ′  are equal to 

0  or π  at the same time (the former is the case of a layer with high refractive index, the latter 

being the case of a layer with low refractive index). So, in all formulas, sin 2 0θ = , sin 1ϕ = , 

( ) ( )1 2
sin sin 1r rϕ ϕ ϕ ϕ′− = − = ± , ( ) ( )1 2

cos cos 0r rϕ ϕ ϕ ϕ′− = − = . The right part of the expression 

in formula (1.4.25) turns into 0 , i.e., T  and R  in the first approximation do not depend on 

errors in layer thicknesses. 

Formula (1.4.21) takes the form: 

( )( )2
1 2 1 2

1 2

1
2 .

T R R R R
R T n

TT

+ +
∆ = −∆ = ± ∆                            (1.5.27) 

Expressions (1.3.34), (1.3.35) for energy coefficients of the two multilayer subsystem 

combination are also simplified. Since cos 2 1θ =  at the central wavelength for all layers, it 

follows that 

( )
( )
( )

2

1 21 2
2 2

1 2 1 2

,             .
1 1

R RTTT R
R R R R

+
= =

+ +
                               (1.5.28) 

These equalities allow to further simplify expression (1.5.27). Taking them into account, 

we obtain 

2 .T RR T n
n

∆ = −∆ = ± ∆                                              (1.5.29) 

Formula (1.5.29) shows that in a first approximation the influence of error in refractive 

index of individual layer on the mirror energy coefficients does not depend on the layer number 

but is exclusively determined by the ratio n n∆ . The influence of the error is insignificant, since 

another small factor T  comprises a part of (1.5.29). So, if 1%T   and the relative error has 

about the same value of 1% , then 0.02%R∆  , which is significantly smaller than the 

experimental errors of the reflectance measurements. 

Formulas (1.3.22)-(1.3.24), connected with a small absorption, can be written down as 

follows, having in mind (1.5.28) 
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1 2

1 2

1
,

1
R RTT

n R R
π κ

−
∆ = −

+
                                                      (1.5.30) 

( )( )
1 2

1 2 1 2

2 ,
1

R TRR
n R R R R
π κ∆ = −

+ +
                             (1.5.31) 

( )1

1

1
.

T R
A

nT
π

κ
+

=                                                                 (1.5.32) 

Expression (1.5.30) includes the small factor T  besides the small parameter κ . So the 

absorption in the layers tells but insignificantly on the transmittance value. Values for R∆  and 

A , found from (1.5.31), (1.5.32) can be significantly greater, if the 1T  value like the T  value is 

small, while the 2T  value is large in comparison with T . Since 1T  is a transmittance of the layers 

following the one under consideration, and 2T  is transmittance of the layers preceding it in the 

mirror, absorption in the outer layers of the mirror exerts greatest influence on the R  and A  

coefficients. Practically the whole of absorption comes to the first 4-6 outer layers. 

So, errors in layer thicknesses and refractive indices show an insignificant influence on 

the energy coefficients of the mirror in the proximity of the central wavelength. At the same 

time, absorption in the layers has a much greater impact on them. Therefore, below we will 

consider only the influence of the last of the factors in greater detail. 

Let ,  H H H L L Ln n i n n iκ κ= − = −   are complex refractive indices of the mirror layers. The 

,  H Lκ κ  are supposedly small. Let us supply the final expression for reflectance of a quarter-

wave mirror at the central wavelength 0 4 4H H L Ln d n dλ = = , (here Hd and Ld  are geometric 

thicknesses of a mirror layers having, respectively, high and low refractive indices). In case 

when the outer layer has a high refractive index (Giacomo, 1956) 

( )
0 2 2

2
.a H L

H L

n
R R

n n
π κ κ+

= −
−

                                            (1.5.33) 

Here 0R  is a reflectance at the central wavelength with no absorption in the layers. 

Remember, that the 0R  value can be calculated to a high degree of accuracy from approximate 

formulas (1.5.14), (1.5.17): 

if the number of layers in a mirror is even and equal to 2N  
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2

0 1 4 ,
N

a L

s H

n nR
n n
 

= −  
 

 

and if the number of layers in a mirror is even and equal to 2 1N +  
2

0 21 4
N

a s L

H H

n n nR
n n

 
= −  

 
. 

In case of a low refractive index of the outer layer 

( )
( )

2 2

0 2 2

2
.L H H L

a H L

n n
R R

n n n

π κ κ+
= −

−
                                           (1.5.34) 

where 0R  reflectance can be calculated from the approximate formulas (1.5.15), (1.5.16): 

if the number of layers in a mirror is even and equal to 2N  
2

0 1 4 ,
N

s L

a H

n nR
n n
 

= −  
 

 

and if it is odd and equals 2 1N +  
22

0 1 4
N

L L

a s H

n nR
n n n

 
= −  

 
. 

Expressions (1.5.33), (1.5.34) are obtained as the first approximation with respect to Lκ  

and Hκ . Besides, an additional approximation is made in the course of their deduction, similar to 

those made for formulas (1.5.14)-(1.5.17). Their comparison with precise ones shows that they 

adequately describe a decrease in the reflectance caused by an absorption in the layers. 

Unlike (1.5.30)-(1.5.32), expressions (1.5.33), (1.5.34) describe absorption not in an 

individual layer of a mirror, but in all the layers at once. Since the customary outer space is air 

( )1an = , and ,  1H Ln n >  change of R  in expression (1.5.34) is significantly greater than that in 

(1.5.33). It means that mirrors featuring a high refractive index of the outer layer show smaller 

absorption losses. 

Let us now analyze the influence of small deviations of the incidence from the normal 

and wavelength from the central on the properties of quarter-wave mirrors. Note, that the 

deviations cause real changes in the 1ϕ  and 2ϕ  phase thicknesses and in the 1 2,  q q  parameters in 

expression (1.5.1) for the mirror period matrix. Equivalent real changes in the values can be 

caused by layer thicknesses and refractive indices variations. But, as was shown at the beginning 

of this section, n  and d  variations tell but insignificantly on the values of mirror energy 
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coefficients. So, the influence of the incidence angle and the wavelength deviations on mirror 

energy coefficients, will also be insignificant. 

However, these deviations may exert a noticeable influence on the phase change on 

reflection. Mirror phase characteristics are also of great importance, in particular, in connection 

with investigating interference filters properties. So, let us supply the formula (Seeley, 1964; 

Ishiguro and Kato, 1953), describing the value of the phase change rϕ at small aγ  and small 

deviations of wavelengths 0λ λ λ∆ = − . 

If the outer layer has a high refractive index, then 

( )
3

2

0

.
2

a a
r a

H L H L H L

n n
n n n n n n

λ πϕ π π γ
λ
∆

= + +
− −

                              (1.5.35) 

It is outer layer has a low refractive index, then 

( )
( )

( )

2 2
2

0

.
2

a H H L LH L
r a

a H L H L H L

n n n n nn n
n n n n n n n

λ πϕ π γ
λ

− +∆
= +

− −
                            (1.5.36) 

We supply these formulas without deduction process since it is time- and space-

consuming. 

Let us only make one remark on the influence of absorption on the phase properties of 

mirrors. We can show that in all cases in the expression for rϕ  there will also be small factors of 

the T  order in all terms containing ,  H Lκ κ . Due to this, absorption is insignificant for the value 

of the phase change on reflection. 

 
1.5.5 Dielectric mirrors on a metal substrate 
 

Here we will obtain simple analytical formulas describing major properties of dielectric mirrors 

on a metal substrate. For this purpose let us consider, in the most general form, a system 

consisting of a multilayer dielectric coating applied onto a surface with s sn iκ−  complex 

refractive index. 

It is convenient to express the system as a combination of two subsystems, the first one 

being the boundary between media featuring s sn iκ−  and an  refractive indices; and the other one 

a dielectric coating limited on both sides by media with an  refractive indices. Then formula 
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(1.3.32) with 0ϕ =  can be used in order to find the amplitude reflectance of the metal substrate 

mirror: 

( )2 1 2 2 2 2

1 2

.
1

r r t t r r
r

r r
′ ′+ −

=
′−

                                                     (1.5.37) 

Here, 1r  is an amplitude reflectance of the first subsystem, 2 2 2 2,  ,  ,  t r t r′ ′  are amplitude 

coefficients of the dielectric coating in the direct and reverse (from the substrate to the outer 

space) directions. 

Amplitude reflectance 1r  is equal to 

1 ,a s s

a s s

n n i
r

n n i
κ
κ

− +
=

+ −
 

and reflectance 2
1 1R r=  is 

( )
( )

2 2

1 2 2
,a s s

a s s

n n
R

n n

κ

κ

− +
=

+ +
                                                 (1.5.38) 

Let us denote the phase shift on the reflection from the boundary with the substrate as 1ϕ : 

1 1 2 2 2

2arg arctan arctan arctans s s a

a s a s s s a

nr
n n n n n n
κ κ κϕ π

κ
= = + = −

− + + −
          (1.5.39) 

Assume first that a dielectric coating is non-absorbing. Then the reflectance from both 

sides of the coating is identical: 2 2
2 2 2r r R′= = . Let us assume 2ϕ  and 2ϕ′  as phase shifts on the 

reflections from different sides of a coating: 2 2 2 2agr ,  agrr rϕ ϕ′ ′= = . Assume also 

2 2 2 2agr ,  agrt tψ ψ ′ ′= = . When there is no absorption, the formula (see Section 1.3) is valid: 

2 2 2 2,             2 .ψ ψ ψ π ϕ ϕ′ ′= = − −                                     (1.5.40) 

Using the designations introduced in (1.5.40), we can put down expression (1.5.37) as 

follows: 
( )

( )

1 2

2

1 2

2 1

1 2

.
1

i
i

i

R R e
r e

R R e

ϕ ϕ
ϕ

ϕ ϕ

′+

′+

−
=

−
                                             (1.5.41) 

For the reflectance 2R r=  we obtain 

( )
( )

1 2 1 2 1 2

1 2 1 2 1 2

2 cos
,

1 2 cos
R R R R

R
R R R R

ϕ ϕ
ϕ ϕ

′+ − +
=

′+ − +
 

which can be conveniently rewritten as 
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( )( )
( )

1 2

1 2 1 2 1 2

1 1
1 .

1 2 cos
R R

R
R R R R ϕ ϕ

− −
= −

′+ − +
                                 (1.5.42) 

Let us study the R  coefficient in the proximity of the central wavelength of the quarter-

wave mirror. Assume for the sake of simplicity, that in the proximity of 0λ , the dispersion of the 

complex refractive index of the metal is small, and 1 1,  R ϕ  may be regarded as constants. Since 

metals usually have sκ ,  significantly larger that sn , and an ,  the value of 1R  is close to 1, and 1ϕ  

close to π  (see (1.5.38), (1.5.39)). As was shown in the previous section, in the first approxi-

mation the phase shift on the reflection 2ϕ′  grows linearly in the proximity of 0λ , and the 2R  

value does not change. So, near the central wavelength in (1.5.42) only ( )1 2cos ϕ ϕ′+ change in 

the first approximation. Note, that the maximal value of R in (1.5.42) is obtained at 

( )1 2cos 1ϕ ϕ′+ = , while the minimal value at ( )1 2cos 1ϕ ϕ′+ = − . Depending on the structure of a 

dielectric mirror in the proximity of 0λ  one of these conditions is fulfilled. 

If the metal substrate is adjacent to the layer with low refractive index, the 2ϕ′  value is 

determined from the formula 

( )2
0

1 .H L

a H L

n n
n n n

λϕ π
λ

 
′ = − −  

 

At 

( )
0 2 2 2

21 arctana H L s a

H L s s a

n n n n
n n n n

κλ λ
π κ

− 
= + + − 

                                 (1.5.43) 

the sum 1ϕ ϕ′+  is equal to π  and ( )1 2cos 1ϕ ϕ′+ = − . The maximal value of R  equals to: 

( )( )
( )

1 2
max 2

1 2

1 1
1 .

1

R R
R

R R

− −
= −

+
 

This value can be very high. Let, for instance, 1 2 0.9R R= = . Then max 0.997R > . The 

reflectance value all over high reflection zone is almost as high. So, a two-component system of 

quarter-wave dielectric layers on a metal substrate is a good reflector. To achieve a high 

reflectance of a mirror on a metal substrate, it requires significantly fewer layers than a usual 

quarter-wave mirror on a dielectric substrate has. Note, that according to (1.5.43), the 

wavelength giving a reflectance maximum is shifted in the direction of large values with respect 

to the central wavelength of quarter-wave layers. 
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Let now, a layer with a high refractive index be adjacent to a metal substrate. Then the 

phase shift 2ϕ′  is found from the formula 

2
0

1 .a

H L

n
n n

λϕ π π
λ

 
′ = + − −  

 

The sum of 1ϕ  and 2ϕ′  in the proximity of 0λ  is close to 2π . At wavelength 

0 2 2 2

21 arctan s aH L

a s s a

nn n
n n n

κλ λ
π κ

 −
= + + − 

                                 (1.5.44) 

the following equalities are valid: 1 2 2ϕ ϕ π′+ = and ( )1 2cos 1ϕ ϕ′+ = . At this value of λ , the 

reflectance is minimal and equal to 
2

1 2
min

1 2

.
1

R R
R

R R

 −
=   − 

 

The minR value may be very small. Thus, when 1 2R R= , it turns into 0. It means that in 

the proximity of 0λ  there may exist deep gaps in the reflectance curve. It is highly undesirable 

for a mirror. Hence, a conclusion follows that mirrors on a metal substrate should not have a high 

refractive index in the first layer from the substrate. 

Now, let us consider the influence of small absorption in dielectric layers on the mirror 

reflectance. 

We can show that the change of the energy coefficient R  in the area of reflectance 

maximum is determined from the approximate formula 

( )( )
( )

1 2
max 2

1 2

1 1
( ) 1 ( ),

1

R R
R R p k p k

R R

− −
= − = − −

+
                      (1.5.45) 

where 

 

if the outer layer has a high refractive index 

( )
2 2

2
( ) a H L

H L

n
p k

n n
π κ κ+

=
−

, 

and if the outer layer has a low refractive index 

( )
( )

2 2

2 2

2
( ) L H H L

a H L

n n
p k

n n n

π κ κ+
=

−
. 
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Thus, absorption in dielectric layers of a quarter-wave mirror on a metal substrate results 

in a similar decrease of reflectance as for mirrors on dielectric substrates. Note, that formula 

(1.5.45) gives values for R  which are close to those calculated from precise recurrent formulas. 

The reflectance decrease in mirrors with high refractive index of the outer layer is 

smaller. It was shown above that the substrate should be adjacent to a low refractive index layer. 

Thus, quarter-wave mirrors on a metal substrate must have an even number of layers. 

Theoretically, the maxR  value is close to 100% in case of 6-8 layers of coating. However, as 

formula (1.5.45) shows, the losses in dielectric layers are an obstacle on the way of obtaining 

super high reflectance. 

 

1.6 Approximate formulas for dielectric narrow bandpass filters 

 

This section does not consider the whole of the diversity of dielectric narrow bandpass 

filters. A detailed description of various designs of narrow bandpass filters can be found in 

A.Thelen’s book (1989). Here we analyze the influence of absorption and deviation of the 

incidence angle on the spectral properties of the filters in the proximity of their central 

wavelength. The dependence of the filter properties on the errors in the refractive indices and 

layer thicknesses is not considered here as the influence of the factors can be to a great extent 

overcome due to a selection of the monitoring method for coating deposition (Furman, 1977). In 

more detailed way many questions connected with investigating dielectric narrow bandpass 

filters are considered in the Sh.A.Furman book (1977). 

 

1.6.1 Common expressions for spectral coefficients of filter-type systems near central wavelength 

 

It is sensible to begin the analysis with the deduction of common formulas for 

transmittance, reflectance and absorptance of special type multilayer systems to be further 

referred to as ’’filter-type systems”. 

A standard narrow bandpass filter is a multilayer system consisting of two quarter-wave 

mirrors with a half-wave layer placed between them. The phase changes on reflection from 

mirrors at the central wavelength are both equal to either zero or π , the double phase thickness 

of the spacer layer equals 2π . Thus, the θ  value in (1.3.34), (1.3.35) at the filter central 

wavelength is divisible by π  in all cases. 
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We made this remark for the purpose of clarifying from the very start the phase condition 

concept that we introduce for filter-type systems. Let us now outline systems to be designated by 

this term. Let us study the system in Fig. 1.9, consisting of two multilayer subsystems with a 

spacer layer between them. Below, we will use designations introduced in subsection 1.3.3. 

Suppose, the subsystem reflectances are close to a unit, and that they, like the spacer layer, are 

slightly absorbing. Further they will be referred to as mirrors 1 and 2, respectively. Let us denote 

the multilayer system in question as a filter-type system if the following condition is satisfied at a 

certain wavelength 0λ  and the normal incidence: the θ  value calculated without an absorption 

taken into account, is divisible by π . We will also call the wavelength 0λ  central. 

The following two formulas from subsection 1.3.3 will be used as initial ones for the 

filter-type system research: 

1 2

1 2

1 ,
i ie r r e

t t t

ϕ ϕ−′−
=                                                               (1.6.1) 

( )2 1 2 2 2 2

1 2

.
i ir e r t t r r er

t t t

ϕ ϕ−′ ′+ −
=                                            (1.6.2) 

We will investigate the system properties in the proximity of the central wavelength at 

the incidence close to the normal. It is evident from the above that the senior terms connected 

with the incidence angle, will be of the 2
aγ  order. Let κ  be the imaginary part of the spacer layer 

refractive index. We supposed it be a small value. Let us consider the parameters characterizing 

the absorption in mirrors 1 and 2 to be values of the same order as κ . Later we will introduce the 

concrete values of these parameters, while for the time being, the supposition is sufficient to 

obtain the main formulas, describing the properties of the filter-type systems. All the calculations 

will be carried out with an accuracy to the first order of 0λ λ λ∆ = − , 2
aγ  and κ . Besides, we will 

neglect the terms containing small factors of the mirror transmittances alongside with the small 

parameters. 

The mirrors characteristics at the central wavelength, normal incidence and in non-

absorbing case will be marked with the 0 upper index. Assume, 

0

0

2 ,ndπϕ
λ

=  

where n  is a real part of the spacer layer refractive index, and d  is its thickness.  

Let us put down the amplitude reflectances of the mirrors as 
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( )

( )

( )

0
1 1

0
2 2

0
2 2

0
1 1 1

0
2 2 2

0
2 2 2

,

,

.

i

i

i

r R e

r R e

r R e

ϕ β

ϕ β

ϕ β

α

α

α

+

+

′ ′+

= −

= −

′ ′= −

 

Here we designated all the terms of the first order of smallness with respect to λ∆ , 2
aγ , κ  

taking account of the influence of the corresponding factors as 1 2 2,  ,  α α α′ and 1 2 2,  ,  β β β ′ . Since 

the amplitude transmittances are small, we will neglect the above factors influence, and assume 

0
1

0
2

0
2

0
1 1

0
2 2

0
2 2

,

,

.

i

s

ia

i

a

nt T e
n

nt T e
n
nt T e
n

ψ

ψ

ψ

=

=

′ =

 

It has been taken into account here that the phase changes on transmission in the direct 

and reverse directions are identical. The following equations have also been taken into account: 

2 2 20 0 0 0 0 0
1 1 2 2 2 2,           s a

a

n nnT t T T t t
n n n

′ ′= = = =  

Taking account of the energy equation 0 0
1 11R T= − , the smallness of the transmittance 0

1T  

and terms 1 2,  α β  we may re-write the expression for the 1r  amplitude reflectance in the 

following approximate form: 

0
1

0
1 1

1 11
2 2

iT
r i e ϕα

β
 

≅ − − + 
 

. 

Similarly, we will put down the remaining amplitude reflectances. Designating as ϕ∆  a 

change in the spacer layer phase thickness connected with the wavelength deviation from the 

central one, the deviation of the incidence angle from the normal and absorption taken account 

of, we will have the following: 
2 2

0 0
2

0 2
a an i
n n
γλ κϕ ϕ ϕ

λ
 ∆

∆ = − + − 
 

.                                         (1.6.3) 

At small values of ϕ∆  
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( ) ( )
( )

0
0

0

1 ,

1 .

ii i

i i

e e i e

e i e

ϕ ϕϕ ϕ

ϕ ϕ

ϕ

ϕ

+∆

− −

= ≅ + ∆

≅ − ∆
 

Let us substitute all the approximate equalities into (1.6.1) and (1.6.2), bearing in mind 

the phase relation (1.3.26) for mirror 2: 
0 0

2 2 22ϕ π ϕ ψ′ = − +  

as well as the fact that according to filter-type system definition, the value of 0 0 0
1 2 2ϕ ϕ ϕ′+ −  is 

divisible by 2π . 

As a result, we obtain the following: 

( )

( ) ( )

0

0 0
2

0 0
1 2 1 2

1 20 0
1 2

0 0
1 2 1 2

1 20 0
1 2

1 2 ,
2

2 .
2

is

a

is

a

n T Te i i
t n T T

n T Tr e i i
t n T T

ϕ

ϕ ϕ

α α ϕ β β

α α ϕ β β
+

′ + + + ′= + ∆ − + 
 

′ − + + ′= + ∆ − + 
 

 

Let us multiply the square modules of the expressions by a sn n . Here we obtain two 

relations for filter-type system energy coefficients: 

( ) ( ){ }
( ) ( ){ }

2 20 0
1 2 1 2 1 20 0

1 2

2 20 0
1 2 1 2 1 20 0

1 2

1 1 4 Im 2 2 4Re ,
4

1 4 Im 2 2 4Re .
4

T T
T T T
R T T
T T T

α α ϕ β β ϕ

α α ϕ β β ϕ

′ ′= + + + − ∆ + + − ∆

′ ′= − + + − ∆ + + − ∆
         (1.6.4) 

Introducing the following designations: 
0

1
0

2

1
0

2

1 2
0

2

,

4 Im ,

2 2 4Re ,

Tc
T

x
T

y
T

α α ϕ

β β ϕ

=

′+ − ∆
=

′+ − ∆
=

                                          (1.6.5) 

and applying them, we will obtain from (1.6.4) that: 

( )2 2

4 ,
1

cT
c x y

=
+ + +

                                               (1.6.6) 

( )
( )

2 2

2 2

1
.

1

c x y
R

c x y

− − +
=

+ + +
                                              (1.6.7) 

We also obtain from the energy equation 1A R T= − −  that: 
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( )2 2

4 .
1

xA
c x y

=
+ + +

                                               (1.6.8) 

The obtained expressions simplify the study of principal properties of various narrow 

bandpass filters. In the following subsection we will apply them for the analysis of two-material 

dielectric filters, consisting of two quarter-wave mirrors and a half-wave spacer layer. 

 

1.6.2 Research of narrow bandpass filters with a half-wave central layer 
 

In the subsection we will obtain simple approximate expressions for the filter 

transmittance maximum, its half-width at the max0.5T  level, transmittance maximum wavelength 

shift with the incidence deviation from the normal. 

If the spacer (central) layer has a low refractive index, the adjacent outer layers of the 

mirrors have a high refractive index. Here we obtain from (1.5.33) and (1.5.35) that 

( )

( )

1 2 2 2

2
20

1 2
0

2 ,

,
2

L H L

H L

L L

H L H H L

n
n n

n n
n n n n n

κ κ
α α π

λ λ πβ β π γ
λ

+
′= =

−

−
′= = +

− −

 

where the γ  angle is connected with the 0γ  incidence angle by the equation L a an nγ γ= . In case 

when the spacer layer has a high index the adjacent mirror layers have a low refractive index, 

and it follows from (1.5.34) and (1.5.36) that 

( )

( )

2 2

1 2 2 2

2 2
20

1 2
0

2 ,

,
2

L H H L

H H L

L H H L L

H L L H L

n n
n n n

n n n n n
n n n n n

κ κ
α α π

λ λ πβ β π γ
λ

+′= =
−

− − +′= = +
− −

 

where the γ  angle is determined through aγ  from the equation H a an nγ γ= .  

The phase thickness 0ϕ  in (1.6.3) is equal to π , since 0 2nd λ= . Substituting concrete 

values into (1.6.5), we obtain for the low refractive index of the central layer 

( )
( )

( )

2 2

0 2 2
2

2 2
2 20

0 2
02

4
,

4 .
2

H L L H

L H L

L H H L L
a a

H L L H H L

n n
x

T n n n

n n n n n
y n

n nT n n n n

π κ κ

λ λπ γ
λ

+
=

−

 − − +
= + 

− −  

                          (1.6.9) 
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In the case of the high refractive index of the central layer, we have 

( )

( )

0 2 2
2

2 20
0

2 0

4 ,

4 1 .
2

H H L

H L

H
a a

H L L H L

n
x

T n n

ny n
T n n n n n

κ κπ

λ λπ γ
λ

+
=

−

 −
= + − − 

                          (1.6.10) 

As follows from (1.6.9), (1.6.10) extinction coefficients enter the formulas (1.6.6)- (1.6.8) 

only through x , while the wavelength and incidence angle are only manifested through y . 

It follows from formula (1.6.6) that the transmittance maximum is attained at 0y = . It 

equals 

( )max 2
4 .

1
cT

c x
=

+ +
                                                 (1.6.11) 

At the normal incidence, the value of 0y =  is attained at the central wavelength 0λ . With 

the incidence deviation from the normal the filter transmittance maximum is shifted toward 

shorter wavelengths. The shift value (designated as δλ  is determined from the condition 0y = . 

We obtain from (1.6.9) for the central layer low refractive index 

( )2 2 2
2

2 22
H H L L a

a
H L

n n n n n

n n
δλ γ
λ

− +
= − ,                                       (1.6.12) 

while (1 .6 .10) gives for the central layer high refractive index 
2

2.
2

a
a

H L

n
n n

δλ γ
λ

= −                                                    (1.6.13) 

The shape of the transmittance curve does not change. 

In the case of no-absorption ( 0x = ) and normal incidence, the transmittance maximum 

equals 

( )
0

max 2
4 .

1
cT
k

=
+

                                                   (1.6.14) 

The c -value is a ratio of the filter front and back mirrors transmittances. If the mirrors 

have the same number of layers, then, depending on the order of layers with high and low 

refractive indices it equals a sn n  or s an n  (the former stands for a low refractive index of the 

first from the substrate layer, while the second one represents the high refractive index of the 

first layer). In both cases, 
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( )
0

max 2
4 .a s

a s

n nT
n n

=
+

 

This value coincides with the transmittance of the boundary between the outer space and 

substrate, and is usually close to a unit. For instance, for 1.52,  1.00s an n= =  we obtain 

max 0.96T ≅ . 

Let us find the half width of the filter at the level of max0.5T T=  in nonabsorbing case. 

We designate it as 0λ∆ . Let the light incidence be normal. Then the half-width is found from 

equation 

1y k= +                                                           (1.6.15) 

where 
0

0
2 0

2 .H

H L

ny
T n n
π λ

λ
∆

=
−

 

 

Let the number of layers in the mirrors be equal to m, (consequently, the total number of 

layers is 2 1m + ). In order to find the transmittance 0
2T , we can make use of the approximate 

formulas from the subsection 1.5.2. Let, first, the number of layers in a mirror be even and a high 

refractive index layer is adjacent to the substrate. Then s ak n n= , and we have the following 

approximate expression for 0
2T : 

0
2 4 .

m

a L

H H

n nT
n n

 
≅  

 
 

Substituting these value in (1.6.15), we find that 

( )( )0

2
0

2
.

m
a s H L L

HH

n n n n n
nn

λ
λ π

+ −  ∆
=  

 
                                   (1.6.16) 

Let again the number of layers in a mirror be even, but the layer adjacent to the substrate 

has a low refractive index. Then a sk n n=  and 

0
2 4 .

m

L L

a H

n nT
n n
 

≅  
 

 

We obtain from (1.6.15) that 
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( )( ) 10

0

2
.

m
a s H L L

a s H

n n n n n
n n n

λ
λ π

+
+ −  ∆

=  
 

                                 (1.6.17) 

It is easy to see that with an odd m the same formulas are obtained: (1.6.16) being the 

case for high, (1.6.17) being the case for low refractive index of the first layer from the substrate. 

Absorption decreases the filter transmittance. Even at small ,  H Lκ κ  the decrease can be 

significant as the denominator for x -expressions includes a small value of 0
2T , the front mirror 

transmittance. We will obtain a more convenient expression (compared to (1 .6 .11)) for the filter 

transmittance maximum in case of absorption. Let us then write down (1.6.11) in the following 

form 

( ) ( )

2 2

max 2 2
44 1 1 .

1 11
a s

a s

n nc x xT
c cc n n

   = + = +   + +   + +
                  (1.6.18) 

In case of low refractive index of the central layer, we obtain from (1.6.9) 

( ) ( )
2 2

0 2 2
2

4
1 1

H L L H

L H L

n nx
c T c n n n

κ κπ +
=

+ + −
.                                       (1.6.19) 

It follows from (1.6.15) that 
10

0
2 0

2 .
(1 )

H L

H

n n
T c n

π λ
λ

−
 − ∆

=  +  
 

Substituting this expression into (1.6.19), and then into (1.6.18) we obtain: 

( ) ( )

212 2 0

max 2
0

4 1 2 .a s H L L H

H L H La s

n n n nT
n n n nn n

κ κ λ
λ

−−  + ∆ = +  ++    
                  (1.6.20) 

In a similar way, but for the case of the filter central layer having a high refractive index, 

we obtain 

( )

210

max 2
0

4 1 2 .a s H L

H La s

n nT
n nn n
κ κ λ

λ

−−  + ∆ = +  ++    
                        (1.6.21) 

The filter half-width in case of absorption will also differ from 0λ∆ . Let us designate it 

as λ∆ . In order to determine λ∆  we have the following instead of (1.6.15): 

1 ,y c x= + +                                                          (1.6.22) 

where 
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0
2 0

2 .H

H L

ny
T n n
π λ

λ
∆

=
−

 

It follows immediately from (1.6.16) and (1.6.22) that 

0 1 .
1

x
c

λ
λ
∆

= +
+∆

                                                   (1.6.23) 

Thus, in case of absorption, the filter half-width grows. By way of noncomplicated 

calculations, we obtain from (1.6.23) for the central layer low refractive index 

( )
2 20

0 0

2 ,H L L H

H L H L

n n
n n n n

κ κλ λ
λ λ

+∆ ∆
= +

+
                                     (1.6.24) 

and for the high refractive index of the central layer 
0

0 0

2 ,H L

H Ln n
κ κλ λ

λ λ
+∆ ∆

= +
+

                                            (1.6.25) 

From (1.6.23) and expressions for maxT and 0
maxT  (1.6.11), (1.6.14) the following relation 

between the filter transmittance maximum and its half-width in case of absorption and in non-

absorbing case takes place: 

( ) ( )22 0 0
max max .T Tλ λ∆ = ∆                                             (1.6.26) 

In this section we confined ourselves to considering narrow bandpass dielectric filters 

featuring exclusively half-wave central layers with the purpose to obtain shorter final 

expressions. With the help of the relation (1.6.6) it would be also possible to consider filters 

whose central layer optical thicknesses are equal to 0 2pλ , with p  always being an integer. 

However, the expressions obtained in this case are more complicated. 

Let us note in conclusion that the formulas obtained in this section adequately describe 

filters properties. This is further proved by the comparison of the values obtained from them and 

the results of calculations through precise recurrent formulas. 
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Chapter 2 

SYNTHESIS OF 
MULTILAYER OPTICAL 
COATINGS  

 

The synthesis problems are opposite to those considered in the previous chapter. There 

we analyzed how, given the parameters of a layered system, to determine its spectral properties 

and to investigate the impact of various factors. The tasks of the synthesis require the reverse: to 

determine the parameters of the coating featuring the sought for spectral properties. We should 

emphasize at once, that solving the synthesis problems we should always keep in mind a 

subsequent practical implementation of coatings. It means, that seeking for solutions, we should 

take into consideration the conditions of engineering implementability of the results. 

A synthesis by way of analysis is a possible approach to the coating design. When 

investigating analysis problems, some properties of coatings which can immediately be 

employed in solving some particular synthesis problems are found. Thus, simple formulas for 

quarter-wave dielectric mirrors make it possible to determine the number of layers and optical 

thicknesses providing a pre-set reflectance level at a certain given wavelength. 

However, only a few problems can be solved on the basis of analysis, and very 

frequently, analysis presents a far-from-optimal way of solution. So during the last three decades 

great significance has been attached to elaborating synthesis methods proper. It should be stated 

that so far there is no universal synthesis method capable to provide optimal solutions of all the 

problems arising in practice. We can enumerate up to a dozen methods that have proved their 

practical significance and have been a valuable and comprehensive contribution to optical 

coating design. A complete and reliable comparative review of the methods employed was 

recently suggested by J.A.Dobrowolski (1986). 

We believe that at the present stage of development, a rational combination of various 

methods based mostly on the merit function optimization is most promising. Here we will try to 
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prove our point of view. With the number of layers in a coating not exceeding 6-8, modern 

computer methods of merit function optimization enable obtaining a reliable global minimum 

(optimal design) within reasonable time. When starting designs are used, optimization methods 

afford good results even with a considerably greater number of layers. Thus, optimization 

methods have wide potentials of their own. Besides, they are much simpler in mastering and 

more comprehensive in application. It is for this reason, primarily, that we consider them basic. 

The major concepts and a number of characteristic peculiarities of the optimization methods are 

the subject matter of the first section in the chapter. 

 

2.3 Synthesis methods based on merit function optimization 
 

Here we consider principal questions related to the design of two-component optical 

coatings with pre-set alternating refractive indices Hn  and Ln . The values sought for in synthesis 

are the layer thicknesses. As a mathematical investigation (Sveshnikov and Tikhonravov, 1987) 

shows, optimal solutions for synthesis problems frequently ought to be sought for among this 

type of coatings. It follows from the results of the research, that materials featuring maximal 

difference between Hn  and Ln  are most promising in designing two-component coatings. 

We should note, that the conclusion concerning optimality of two-component coatings 

may prove invalid when the number of layers is rigidly limited. Thus, a three-layer antireflection 

coating with three different refractive indices may turn better than a two-component 

antireflection coating featuring the same number of layers (but it will in all cases be worse than 

two-component coatings with a bigger number of layers). So, when the number of layers is 

strictly limited, it is worthwhile to determine their refractive indices. Corresponding methods 

may be based upon the results described in this section. Let us emphasize, however, that of 

greatest interest at present are methods for two-component coating design and, moreover, this 

type of coatings proves to be most convenient technologically. 

 
2.1.1 Merit function selection 
 

For the sake of certainty, let us consider the synthesis problem for two-component 

multilayer dielectric coatings at the normal incidence. The sought for spectral characteristic here 

will be an energy reflection coefficient. Let us denote the target reflectance dependence as ( )R λ . 
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Generally speaking there is no coating featuring an exactly required reflectance ( )R λ  So, we can 

only speak about designing a multilayer coating whose reflectance is in some respect close to 

( )R λ . 

Let the number of layers equals m . We will discuss the question of determining the 

number of layers later. Since the refractive indices are pre-set, (we also consider their alternation 

order as pre-set), the values sought for in synthesis are geometrical thicknesses of the layers 

1 ,  ... ,  md d . Let us introduce an m-dimensional space of the sought for parameters. Its elements 

are vectors 

{ }1 ,  ... ,  .mX d d=  

Let us denote the reflectance of a multilayer coating defined by the X parameter vector, 

as ( ),R X λ . 

Let ,  d uλ λ  are respectively the lower and the upper boundaries of the spectral band of 

interest. In order to assess the coating reflectance proximity to the target dependence ( )R λ  let us 

introduce the merit function 
2

( ) ( , ) ( )u

d

F X R X R d
λ

λ
λ λ λ = − ∫                                         (2.1.1) 

The merit function in (2.1.1) is known as mean square estimation. It is very 

computationally convenient primarily because the ( )F X  function can be differentiated with 

respect to X  (see the next subsection). A disadvantage of the mean square estimation is its low 

sensitivity to spectrally narrow but big deviations of ( , )R X λ ) from ( )R λ . However, these 

deviations often prove to be of little significance from the physical point of view. Besides, they 

are not obligatory, in fact, they are exceptionally rare when a number of layers is small. So the 

mean square merit function is widely applied in synthesis. 

The mean square merit function is often entered by non-negative weight function ( )λv : 

2
( ) ( ) ( , ) ( )u

d

F X R X R d
λ

λ
λ λ λ λ = − ∫ v                                        (2.1.2) 

The introduction of the weight function allows to estimate the proximity of ( , )R X λ ) and 

( )R λ  in different ways at various parts of the spectrum and thus achieve a closer proximity 

between ( , )R X λ  and ( )R λ  in most vital parts at the expense of a possible decrease of the 

approximation precision in others. 
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Many problems require homogeneous approximation to the target function ( )R λ . For 

instance, when designing achromatic antireflection coatings, a possibly more even kind of the 

spectral dependence of the residual reflection is sought for. From the point of view of these 

problems the so-called even estimation would be a most adequate form of the merit function: 

( ) max ( , ) ( ) .
d u

F X R X R
λ λ λ

λ λ
≤ ≤

= −                                           (2.1.3) 

But this merit function is exceptionally rarely applied in the optical coating synthesis. 

This is accounted for by a relatively complicated way of the merit function optimization. The 

maximum-type function is not differentiable with respect to X  and so most widely spread 

optimization methods employing the ( )F X derivatives are not applicable here. At the same time 

it should be noted that the synthesis methods based on the (2.1.3) type merit function are quite 

possible. Such methods are successfully elaborated for solving synthesis problems in 

radiophysics (Katz, Meshanov and Feldstein, 1984). 

Alongside with the possibility of employing merit function (2.1.3) an alternate method of 

obtaining a more homogeneous estimation exists. It is sufficient to slightly change the form of 

the function (2.1.2) for the purpose. Let us substitute the power index 2 in (2 .1 .2) for a larger 

integer n : 

( ) ( ) ( , ) ( )u

d

n
F X R X R d

λ

λ
λ λ λ λ = − ∫ v                                        (2.1.4) 

It can easily be seen that the merit function becomes under these conditions more 

sensitive to the non-uniform difference between ( , )R X λ  and ( )R λ . A strict mathematical 

statement is valid that when n →∞  the merit function (2.1.4) with ( ) 1λ =v  turns into an even 

estimation (2.1.3). Thus, when the resulting spectral dependence is not adequately uniform in 

approximating the sought one it is expedient to just increase the power index in (2.1.2). This is, 

calculationally, a simpler way, as the function (2.1.4) is differentiable with respect to X . 

In a numerical solution of the synthesis problem, it is impossible to calculate ( , )R X λ  at 

all points of the spectral band. So, let us introduce some set of wavelength values for the band. 

Let the total number of points in the set is equal to L . Let us denote the points as 1 2,  ,  ... ,  Lλ λ λ .  

Below we will discuss the selection of the points and their location when we consider numerical 

examples of synthesis. 
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Integrals are always calculated on the computer by some approximate formula. All 

approximate formulas turn integral calculation to summing on the given wavelength set. In this 

connection, it is natural to write down the merit function from the very beginning as 

2

1
( ) ( , ) ( )

L

l l l
l

F X R X Rλ λ
=

 = − ∑ v ,                                       (2.1.5) 

where lv  are the given non-negative weight factors. 

Below we will always hold that the merit function takes the form (2.1.5). The weight 

factors lv  at the beginning of the synthesis axe usually assumed to be equal to a unit. Further on, 

their values can be adjusted depending on the results obtained (see the remark concerning the 

weight function selection above). 

 
2.1.2 Merit function optimization 
 

Synthesis methods based on the merit function optimization, actually bring the search for 

the solution down to one-time or re-iterated minimization of the function. Different versions of 

the general pattern of the solution search will be considered below. For the present, we will 

confine ourselves to the merit function optimization process proper. 

A number of good books deal with the optimization methods (see, e.g., Himmelblau, 

1972). So we will not dwell into mathematical details and discuss the whole diversity of the 

methods suitable for the synthesis problems. Let us consider just a few basic methods, and 

discuss primarily the calculative aspects, specific of the multilayer optical coatings synthesis 

problems. 

In our experience various gradient methods are efficient for a search of the merit function 

minimum. All the methods of the type imply re-iterated calculations of the merit function and its 

gradient, i.e., the vector comprised by partial derivatives of the merit function with respect to the 

layers sought for parameters. These two operations are essential, and so the rate and precision of 

their fulfillment determine to a considerable degree the calculation potentials of the method. 

Recurrent methods of spectral coefficients calculation considered in Chapter 1 enable a 

high speed and calculation precision in determining the merit function. With the normal 

incidence and no absorption in the layers recurrent formulas for the amplitude reflectance takes 

the following form 4: 

 
4The (2.1.6) and (2.1.7) formulas are more economical than the matrix formulas. So it is preferable to use them when it is 
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( )
2

1, ,01 0
1,0 1,0 2

1 0 1, ,0

,         ,     1,  ... ,  ,
1

j

j

i
j j j

j i
j j j

r r en n
r r j m

n n r r e

ϕ

ϕ

−
+

+ −
+

+−
= = =

+ +
                 (2.1.6) 

where 

1
1,

1

2,                 .j j
j j j j j

j j

n n
r n d

n n
πϕ
λ

+
+

+

−
= =

+
                                     (2.1.7) 

In these formulas, 0 sn n=  is the substrate refractive index, 1m an n+ =  is the outer space 

refractive index. The layer refractive indices 1,  ... ,  mn n  alternately take the values of Hn  and 

Ln . 

The reflectance is expressed through r  according to the formula: 
2 *

1,0 1,0 1,0 .m m mR r r r+ + += =                                                 (2.1.8) 

In order to calculate the merit function (2.1.5), it is necessary to calculate ( , )lR X λ  

reflectance values L  times at 1 2,  ,  ... ,  Lλ λ λ λ=  following the formulas (2.1.6)-(2.1.8). Here, the 

values of the layer thicknesses in (2.1.7) are set by the X -vector coordinates. 

Let us now discuss calculation of the merit function gradient: 

1

( ) ,  ... ,  .
m

F FF X
d d

 ∂ ∂
∇ =  ∂ ∂ 

 

Frequently approximate formulas are applied to calculate the F -function derivatives: 

( ) ( )1 1,  ... ,  ,  ... ,  ,  ... ,  ,  ... ,  
.k k m k m

k k

F d d d d F d d dF
d d

+ ∆ −∂
≅

∂ ∆
 

It is evident in this case that in order to determine F∇ it is necessary to additionally 

calculate the merit function m times alternately giving small increments to all the thicknesses. 

This, naturally, results in an extended calculation time. Note also, that in this way the derivatives 

are sometimes calculated with a low precision level, especially near the local minima of the merit 

function. 

So it is preferable to use another way of calculating F∇ . It is based on the precise 

analytical expressions for the merit function partial derivatives. Let us deduce these expressions 

for the function (2.1.5) under investigation and selected method of the reflectance calculation. 

 
necessary to calculate reflectance only. If a necessity arises to calculate transmittance and absorptance also, matrix formulas 
are preferable. 
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Let the thickness of the k-th layer change by the small value δ . Determine the major 

increment term of the amplitude reflectance with respect to δ . It is evident that with the 

thickness variation of the k -th layer 1,0jr +  changes if j k≥ . It is easy to calculate that the 1,0kr +  

change is equal to 

( )
2

1,2
1,0 ,0 22

1, ,0

14 .
1

k

k

k ki
k k k i

k k k

r
r i n r e

r r e
ϕ

ϕ

π δ
λ

+−
+ −

+

−
∆ = −

+
                                (2.1.9) 

With j k>  the increments of 1,0jr +  can be expressed through ,0jr  increment. Then we 

obtain 

( )

2
2 1,

1,0 ,022
1, ,0

1
.

1
j

k

i j j
j ji

j j j

r
r e r

r r e
ϕ

ϕ

− +
+

−
+

−
∆ = ∆

+
                                     (2.1.10) 

Let us introduce the variable jΨ  setting a recurrent formula for jΨ  calculation in the 

opposite, compared to ,0jr , direction: 

( )

2
2 1,
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1, ,0

1
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1
j
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i j j
j ji

j j j
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e

r r e
ϕ

ϕ

− +
+
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−
Ψ = Ψ

+
                                       (2.1.11) 

Let us call it a conjugate variable. The initial value for jΨ , that is the 1m+Ψ  value will be 

determined later. The validity of the following equation follows from (2 .1 .10), (2 .1 .11): 

,0 ,j jr constΨ ∆ =                                                    (2.1.12) 

in other words, independence of the product from the j -number. Equation (2 .1 .12), in 

particular, gives 

1 1,0 1 1,0.m m k kr r+ + + +Ψ ∆ = Ψ ∆  

Substituting expression (2.1.9) for 1,0kr +∆  here and taking account of formula (2 .1 .11) 

with j k= , we obtain 

1 1,0 ,0
4 .m m k k kr i n rπ δ
λ+ +Ψ ∆ = − Ψ                                          (2.1.13) 

With the changing thickness of the k -th layer the reflectance changes at all wavelengths. 

Let us denote R -increment at lλ λ= as ( )lR∆ . Further, we will supply all the values calculated 

for lλ λ=  with the upper l -index in round brackets. In particular, ( )
1,0

l
jr +  are values calculated 

from recurrent formulas (2.1.6) with lλ λ=  in (2.1.7). 
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In accordance with (2.1.8) 

( ){ }*( ) ( ) ( )
1,0 1,02Re .l l l

m mR r r+ +∆ = ∆                                         (2.1.14) 

The merit function increment caused by the variation of the k -th layer thickness is equal 

to 

( )

1
2 ( , ) ( ) ,

L
l

l l l
l

F R X R Rλ λ
=

 ∆ = − ∆ ∑ v  

or, taking account of (2.1.14), 

( ){ }*( ) ( )
1,0 1,0

1
Re 4 ( , ) ( )

L
l l

l l l m m
l

F R X R r rλ λ + +
=

 ∆ = − ∆ ∑ v .                     (2.1.15) 

Let us set the initial conditions for the recurrent formula (2.1.11) L -times: 

( )*( ) ( )
1 1,04 ( , ) ( ) ,l l

m l l l mR X R rλ λ+ + Ψ = − 
v                                  (2.1.16) 

and let us carry out the conjugate variables calculation for all j  from m  to 1 L  times. The 

conjugate variables calculated at the l -th initial conditions will also be supplied with the l  upper 

index in brackets, as ( )l
jΨ . 

Using (2.1.16), let us put down expression (2.1.15) for the merit function increment as: 

{ }( ) ( )
1 1,0

1
Re

L
l l

m m
l

F r+ +
=

∆ = Ψ ∆∑ .                                             (2.1.17) 

Equality (2.1.13) is valid at any λ . Thus, when lλ λ=  we will obtain 

( ) ( ) ( ) ( )
1 1,0 ,0

4 .l l l l
m m k k k

l

r i n rπ δ
λ+ +Ψ ∆ = − Ψ                                          (2.1.18) 

Substituting (2.1.18) into (2.1.17) we find that 

{ }( ) ( )
,0

1

4 Im .
L

l l
k k k

l l

F n rπ δ
λ=

∆ = Ψ∑  

It follows from the above, that a partial derivative of the merit function with respect to 

the k -th layer thickness is equal to 

{ }( ) ( )
,0

1

4 Im .
L

l l
k k k

lk l

F n r
d

π
λ=

∂
= Ψ

∂ ∑                                        (2.1.19) 

The resulting expressions allow a fast computation of the merit function gradient. 

Actually, in order to calculate all partial derivatives following formula (2.1.19), it is sufficient to 

have the values of the conjugate variable obtained as a result of L -operations on the recurrent 
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formula (2.1.11) from m  to 1. These operations consume as long as a single calculation of the 

merit function, (since it also requires L  operations of formula (2.1.6) from 1 to m ). 

Mathematically, the resulting expressions are absolutely precise. Hence, a computer precision of 

calculations is achieved. Due to this, the use of (2.1.11), (2.1.16) and (2.1.19) in calculations 

increase the efficiency of the optimization methods employed. 

In our experience, a high speed and precision in merit function minimum determining are 

achieved when the combination of steepest descent method and the conjugate gradients method 

is used. Optimization from the starting design 0X  begins by employing the first one and then the 

second one is used as the minimum is approached. The starting design choice will be considered 

in detail in the next subsection. Meanwhile we will dwell at some length on the gist of the 

methods enumerated above. 

Vector - F∇ , opposite in its direction to the merit function gradient, is known as its 

antigradient. It shows the direction of the fastest decrease of the F -function at every point 

within its area of determination. In the steepest descent method, the descent occurs from the 

starting point 0X  in the direction of - 0( )F X∇  antigradient. It means that the minimum of a 

single variable function 

( )0 0( ) F X F Xϕ α α = − ∇                                        (2.1.20) 

is being sought for along the ( )0 0X F Xα− ∇  straight line in the parameter space. 

There are numerous ways of seeking the function ( )ϕ α  minimum value, or, as it is put, 

the ways of one-dimension minimization. The simplest one looks as follows. A certain step value 

h  is set along the antigradient direction. Then a sequential motion along this direction is effected 

in the parameter space. This motion is taken in h F− ∇ steps. It means that when taking the p -th 

step we find ourselves at the ( )0 0X ph F X− ∇  point. Every step is accompanied by a 

verification of whether the ϕ -function keeps decreasing, i.e., whether the condition 

( )( ) 1ph p hϕ ϕ< −    is valid. As soon as the condition is violated, one step backward is taken 

and the point of the stop is taken for the minimum coordinate along the set antigradient direction. 

The simplest algorithm of a one-dimension minimization can be improved. For a higher 

precision a parabolic interpolation of the ( )aϕ  function is possible using the three last points and 

determining the minimum point on the obtained parabola. A step-counter is of use, too. If the 

steps are too many, which tells adversely on the solution time it is expedient to increase the h -
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value of the step. If the steps are too few which tells adversely on the precision of the one-

dimension minimization or if the very first step results in increasing the F -function, it is 

necessary to decrease the h -value of the step. 

Let us denote the minimum point obtained in the process of one-dimension minimization 

as 1X  The function F  gradient is calculated again at point 1X , and a descent along the newly-

oriented antigradient occurs. The next minimum point obtained in the process of the one-

dimension minimization can be denoted as 2X . As a result of a series of similar descents, we 

obtain a sequence of points  
0 1,  ,  ... ,  ,  ...kX X X  

with the merit function F  values monotonously decreasing along the sequence: 

( ) ( ) ( )0 1  ...  ...kF X F X F X> > > >  

Various criteria are used for interrupting the steepest descent method, the most widely 

used one taking into account a merit function change. This is the way it is implemented. A 

certain relatively small number ε  is set. As soon as the following inequality becomes valid 

( ) ( )
( )
1

1
,

k k

k

F X F X

F X
ε

−

−

−
<  

the method terminates. 

Usually, the steepest descent method predetermines a fast decrease of the function along 

the first few directions of one-dimension minimizations. Then the speed of the decrease slows 

radically. This is especially evident when the function isolines have a ”ravine-like” structure. 

Experience shows that the merit function isolines in the synthesis problems look exactly like the 

former. The ”ravine-like” pattern of the merit function grows fast as the number of the F -

function variables, i.e., the number of the layers increases. The conjugate gradients method 

allows to manage the ravine-like pattern of the minimized function in a simple and reliable way. 

The conjugate gradients method differs from the steepest descent one in the fact that a 

one-dimension minimization is not implemented along the antigradient but rather along some 

’’adjusted” direction obtained with the previous descent direction taken into account. Let kX  be 

a point obtained after the k -th process of a one-dimension minimization; ( )kF X∇  be the merit 

function gradient value at this point. Let us use designation of 1kp +  for the vector pointing the 
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next 1k + -st direction of minimization. The antigradient vector at the starting point 0X  is 

selected as the first direction: 

( )0
1 .p F X= −∇  

The subsequent directions of minimization are determined in the following way: 

( )1 ,k
k k kp F X pβ+ = −∇ +  

where the kβ  factor, adjusting the antigradient direction towards the previous direction of 

descent is determined from the formula 

( ) ( ) ( )( )
( )

1

2

,
.

k k k

k
k

F X F X F X

F X
β

−∇ ∇ −∇
=

∇
 

The outer round brackets denote here the scalar product of vectors. 

The process of a one-dimension minimization in the conjugate gradients method can be 

carried out in different ways. Thus, the above method can be applied, too. 

It is sensible to have the so-called renewal of the conjugate gradients method from time 

to time. It means, in effect, that after every s  descents, the 1 2 1,  ,  ...s sβ β+ +  factors are believed to 

be equal to zero, and the antigradient vector is selected as the next minimization direction. The s 

number is usually determined within the range of 5-10. The method renewing decreases the 

impact of calculation errors, including errors of a one-dimension minimization. 

As a criterion of a transition to the conjugate gradients method, a relative decrease of a 

merit function in the successive one-dimension minimizations can be used. In our experience, the 

transition is reasonable when the decrease becomes less than 2 35 10 5 10− −⋅ − ⋅ . 

Let us consider another important item. To simplify the problems, we have so far never 

mentioned any limitations concerning permissible values of the coating parameters. However, 

they do exist, the major of them being positive values of the thicknesses of the coating layers. 

We will consider it in more detail. There may be other limitations too, one of them, e.g., dealing 

with the total thickness of the coating, but they are often non-essential. 

Numerous optimization methods taking account of the limitations in the parameter space 

have been elaborated. For their detailed description one can see D. Himmelblau’s book (1972). 

Here we will describe a simplest way of taking account of the positive values of the layer 

thicknesses. 
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Let p -vector be setting the direction of a one-dimension minimization in the method 

currently employed. Let us put it down in the coordinate form as 

{ }1,  ... ,  .mp p p=  

In the process of one-dimension minimization the motion towards the minimum value is 

effected as successive steps of the following type: 
( 1) ( ) ,X X hpν ν+ = −  

where h  is the value of the method step, ( )X ν  and ( 1)X ν +  are the coating parameters vectors at 

the beginning and the end of every successive step. The coordinate form of the expression is: 
( 1) ( ) ,         ( 1,  ... ,  ).k k kd d hp k mν ν+ = − =  

If, as a result of any step, some layer thickness ( 1)
kd ν + becomes negative, its value is 

substituted by zero. Otherwise, the one-dimension minimization remains similar to the 

description above. As a result, condition 0kd ≥  for all 1,  ... ,  k m= is always observed. The 

described way of taking account of the permissible parameters values is actually a simplest 

version of the gradient projection method. 

 

2.1.3 General pattern of the synthesis and the problem of the starting design choice 
 

As we set the problem, it is natural to consider optimal for the given number of layers a 

solution which corresponds to the global minimum of the merit function. 

However, the merit function is multiextremal, and besides the global minimum there exist 

a lot of local minima. Their number grows fast as the number of layers grows and reaches 

hundreds and thousands even for 6-10 layer coatings. This makes a search for an optimal 

solution extremely complicated. 

Note also, that the very concept of the optimal solution is but poorly formalized. Indeed, 

which is better: a multilayer coating possessing reflectance close to the required function ( )R λ  

or a coating with fewer layers but possessing reflectance somewhat less approximating the above 

function? It is even more ambiguous, as it is next to impossible to guess in advance the relation 

between the number of layers and the approximation closeness to the required function. 

In solving any kind of the synthesis problems, it is necessary to take into account a 

number of other non-quantitative aspects, including, firstly, the necessary costs of the solution in 

terms of computer time and labors costs. A waste of many hours in search of an optimal solution 



109 

 

is evidently senseless if, on the other hand, we can find within several minutes “an acceptably 

adequate” solution satisfying all the requirements. 

All the above causes the following conclusion concerning the merit function 

optimization: a global optimization is frequently redundant and it is advisable to look for a 

sufficiently thorough local minimum ensuring the required accuracy of the pre-set spectral 

dependence approximation and good feasibility properties of the coating design. 

Such “quasioptimal” solution is frequently achieved due to a good selection of a starting 

design for the merit function optimization. The researcher’s personal experience is undoubtedly 

of utmost importance, though a number of common rules can be recommended. This, firstly, 

concerns, edge filters of various type. It is advisable to use quarter-wave mirrors or some 

combinations of such mirrors as the first approximation to their design. 

The required spectral characteristics of the edge filters have two specific adjacent areas: 

that of a high reflectance and the one of a high transmittance. In synthesis, ( )R λ  is usually set as 

equal to 0 in one single spectral band and ( ) 1R λ =  in the other one, adjacent to the former. We 

showed in Chapter 1 that the layer thickness variations are of little influence on the spectral 

characteristics of the multilayer systems in the high reflectance zones, while they are much more 

pronounced in the adjacent areas. So, by varying the layer thicknesses, we can increase 

transmittance beyond the high reflectance zones of the mirrors without any noticeable decrease 

of their reflection properties. It is due to this property that quarter-wave mirrors and their 

combinations as the starting designs for the given class of synthesis problems are preferable. 

The properties of the mirrors have been thoroughly studied (see Chapter 1). Thus, it is 

easy to select and match their parameters so that a sufficient reflectance level can be ensured 

within the required band (the parameters include the number of layers, and the central 

wavelength). If the band turns to be of a wider range than the principal high-reflectance zone of 

the mirror, it is necessary to employ superimposed quarter-wave mirrors with central 

wavelengths displaced with respect to each other as the starting design. 

As an example, Fig. 2.1 shows the reflectance of an edge filter obtained in the described 

way. The layer refractive indices are 2.30,  1.34H Ln n= = , the substrate refractive index is 1.52, 

the outer space is the air ( 1an = ). The layer adjacent to the substrate has a high refractive index. 

The filter was designed for the use as a cold mirror in light sources. 
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Figure. 2.1: Reflectance of the 21-layer edge filter 

21S .798H 1.217L 1.310H 1.351L 1.185H 1.451L 1.389H 1.207L 1.513H 1.246L 
1.062H 1.174L .674H .785L .999H .940L 1.142H .873L .521H 1.490L .289H

 

with ( )01.52,  2.30,  1.34  500 s H Ln n n nmλ= = = =  

 

In synthesis, ( ) 1R λ ≡  was given within the band between 400 and 800 nm and ( ) 0R λ ≡  

within the band between 800 and 2000 nm. Since the high-reflectance zone of a quarter-wave 

mirror with refractive indices equal to 2.30 and 1.38 does not overlay the required spectral band, 

a combination of three 7-layer mirrors featuring central wavelengths of 700, 600 and 500 nm was 

used. It is of interest to note here that as a result of optimization, the merit function value was 

decreased a hundred-fold. 

Using this example, let us consider some ideas concerning the number of layers of a 

synthesized coating, the wavelength set within the spectral band in question and weight factors in 

(2.1.5). 

The number of layers of the mirrors presenting the starting design was determined so that 

an adequate level of reflectance was ensured within the required spectral band satisfying the 

elaborators of the light sources. 

As for the selection of the wavelength set, two conflicting requirements exist. On the one 

hand, there is a wish to describe the obtained spectral dependencies with utmost precision, and 

hence there is a necessity to use dense sets. On the other hand, it is not desirable to extend the 

calculation time, which is proportional to the number of points in the set. So we have to employ 
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compromise options. In order to achieve an adequate degree of accuracy of the spectral curve 

description, it is usually sufficient to take 3-4 points of the set between its two adjacent extreme 

points. We should keep in mind that the distance between two adjacent extreme points decreases 

as the number of layers grows. An experience of selecting sets is usually accumulated fast in 

practical solution of synthesis problems. For this purpose, preliminary calculations on dense sets 

can be used. In many cases it is worthwhile to use non-homogeneous sets in order to save the 

calculation time. They can frequently be selected as less thick in the long-wave part of the 

spectral band as the oscillation swing of the spectral curve decreases here. For instance, in order 

to calculate the design in Fig. 2.1 a set of a 20nm steps was used in the area between 400 and 

800 nm, and a 40 nm step was employed within the area between 800 and 2000 nm. 

When non-homogeneous sets are employed, we should keep in mind that a decrease in 

the number of points within any spectral band leads to decreasing its relative contribution into 

the merit function, and, consequently, the response of the latter to the approximation accuracy of 

the required spectral dependence also decreases here. As was mentioned earlier, weight factors 

can be used to regulate the degree of closeness between the actual and the required spectral 

characteristics in various spectral zones. It is worthwhile to change them sometimes as synthesis 

goes, if it becomes evident in the process of optimization that the approximation accuracy at 

some essential spectral zones is not sufficient. When such systems as edge filters are synthesized, 

it is worthwhile to select weight factors small or even equal to zero, in the areas of sharp changes 

of the target spectral curve. Otherwise, these areas can domineer as a contribution into the merit 

function due to the great discrepancy between the actual and the required characteristics. In our 

example, the vicinity of the λ  point equal to 800 nm represents such an area. 

It is difficult to give all-embracing recommendations concerning the starting design 

choice and algorithm peculiarities for different types of synthesis problems. Let us only note here 

that good starting designs can be also set in case of wide-band mirrors and polarizers synthesis. 

Let us now discuss synthesis problems where the starting design choice is vague, as a 

rule. Such are the problems of synthesis of antireflection coatings, neutral beam splitters, 

multilayer systems featuring non-standard spectral properties. How can a “quasioptimal” 

solution, if not the optimal one be obtained for them? 

Let us make another remark concerning optimization of multiextremal functions. In 

principle, there are mathematical methods of their global minimum search. However, a strict 

employment of these methods which would ensure determining the global minimum is not 
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feasible practically when the number of variables exceeds 1 or 2 because it implies the necessity 

of tremendous amounts of computer time. Due to this fact, methods are mostly used which, 

speaking strictly mathematically, cannot guarantee unconditional determining of the global 

minimum, but they are completely justifiable in solving practical problems. The considerations 

above, related to a search of quasioptimal solution of the synthesis problems accord with this 

approach. 

Very often multilayer optics synthesis problems are solved successfully through 

reiterated optimization of the merit function with series of random starting designs. As a 

quasioptimal solution, a vector of the coating parameters is taken, which corresponds to the 

deepest of the obtained minima. Sometimes, it is worthwhile to pick out several quasioptimal 

solutions, especially, if the minima are about the same depths. The final selection of the best 

solution can be done on the basis of the results of their practical implementation. 

Let us consider the calculating process in more detail. In order to set the starting designs, 

a generator of evenly distributed numbers is used. This code can be found on any computer both 

mainframes and PCs. For the sake of certainty, evenly distributed over the segment [ ]0,1  

numbers are generated. Let us denote them as 1 1,  ,  ... ,  ,  ...nξ ξ ξ . The coordinates of the first 

starting design vector are set in the following way: 

1 1,  ... ,  ,m md D d Dξ ξ= =  

where D  is a normalization factor whose choice will be discussed a little later. The second 

starting design employs the following random numbers 1 2,  ... ,  ,  m mξ ξ+ etc. 

Certain conclusions can be made concerning a selection of the normalization factor if we 

consider the geometric interpretation of the admittance supplied in Section 1.2. It was shown 

there that with a change of the layer thickness from 0 to (2 )nλ , the admittance makes a 

complete circle in its phase plane. With a further growth of the layer thickness, the same values 

are obtained. Thus, if we meant synthesis at one wavelength, employing a thicker layer than 

(2 )nλ  would be just senseless. But this cannot be so categorically asserted when a synthesis in 

the spectral band is involved since we have different trajectories in the admittance phase plane 

for different wavelengths. Nevertheless, practical experience shows that in the latter case, it is 

sensible to take similar limitations concerning layer-thicknesses of the starting design. Hence, we 

obtain the following estimation for the normalization factor selection: 
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n
λ

  

Here λ  can be substituted for the mean wavelength of the spectral band in question, and 

n  - for the mean value of the layer refractive indices. 

The number of the starting designs under consideration can be limited by setting either 

their total number or the calculation time. In order to try to obtain deepest local minimum, it is 

worthwhile to do it in two steps. First a rough (and consequently a much faster, rather than more 

accurate) optimization of the merit function is effected for a series of randomly set starting 

designs. The stop criterion for it can be determined as a relative decrease of the function by 
3 25 10 10− −⋅ −  value. Further a more accurate optimization follows for only 5-10 options where 

the first stage resulted in least values of the merit function. 

So far we have spoken about a search of the merit function minimum at a set number of 

the coating layers. Let us now consider the question of setting this number. Only most general 

recommendations are possible here, as the selection of the number of layers is determined, 

firstly, by concrete design requirements and, secondly, it depends greatly on the course of the 

solution (i.e., on where it is possible or impossible to reach a desired level of approximation of 

the target spectral dependence). We imply problems where assessment of the number of layers 

necessary to achieve the pre-set spectral properties is vague or not clear at the beginning. 

On the whole, it is worthwhile to look for the solution of the problem by gradually 

increasing the number of layers as the difficulties of optimization increase considerably with 

their number growing. However, it is reasonable sometimes to consider a relatively large m from 

the very beginning, as it enables a simultaneous search for designs with a various number of 

layers. Let us dwell on it in more detail. For instance, when designing antireflection coatings, we 

tend to obtain a series of antireflection coatings with various numbers of layers, still not 

exceeding, say, six. Then it is worthwhile to use as many starting designs with six layers as 

possible at the first, rough stage. Since some layer thicknesses generated by the random number 

generator, are small, many of them turn to 0  in the process of optimization (due to the projection 

to the permissible parameters region). If the thickness of the outer layer turns to zero, the total 

number of layers decreases by one. If the thickness of some middle layer turns to 0, the adjacent 

layers having the same refractive indices, merge, thus decreasing the total number of layers by 2. 

Due to this fact, the very first, rough, stage of the optimization gives a number of systems with 
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6m < . They can be further used as starting designs for synthesis of antireflection coatings with a 

number of layers fewer than 6. 

In conclusion of the section, let us consider the result of the synthesis of six-layer 

antireflection coatings for the spectral band between 400 and 900 nm. Materials featuring 

2.30,  1.45H Ln n= =  were used in the synthesis. The layer adjacent to the substrate has a high 

refractive index. The substrate has 1.52sn = , the outer space is the air. The normalization factor 

for generating layer thicknesses in compliance with the above consideration was taken equal to 

150 nm. During the first, rough stage of optimization with the stop criterion of the function 

relative decrease equal to 35 10−⋅ , over 100 starting designs were generated. A further, more 

refined optimization with a stop at the 410−  value of the relative function decrease was carried 

out for 10 options with the minimal values of the merit function obtained in the coarser 

optimization stage. Two final (quasioptimal) solutions were selected for the least values of the 

merit function. The reflectances of the obtained solutions are presented in Fig. 2.2. 

 
Fig. 2.2: Reflectances of the 6-layer antireflection coatings with 

( ) ( )1  6S .318H .34L1 .977H .106L .375H 1.099L,  2   6S .34H .391L 1.104H .188L .710H 1.216L  

with ( )01.52,  2.30,  1.45  500 s H Ln n n nmλ= = = =  

 

2.2 Synthesis method based on the needle-like variations of the refractive index 
 

The synthesis method considered at the end of the previous section enables to find a 

reliably good solution within a sensible time span in case the number of layers is small and 
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limited to 6-8. As the number of layers grows, the number of local minima grows dramatically 

and a probability to reach a sufficiently deep minimum decreases significantly. With the number 

of layers growing, the rate of search for the local minimum slows down and becomes more 

complicated due to a more complex structure of the function and an extended time of the 

function and the gradient calculations. Sometimes these difficulties are overcome by varying 

thicknesses of only a few layers rather than all of them in the course of synthesis. This can be 

done, for instance, when there is a high reflectance zones in the required spectral band. Then, it 

is worthwhile to include fixed quarter-wave mirrors providing high reflection in the required 

zones into the designs in order to change the thicknesses of only some additional layers. 

However, on the whole, this approach cannot guarantee common grounds and by far not always 

produces satisfactory results. The method considered below, according to a vast experience of its 

practical application, makes it possible to find a good solution for many cases when other 

methods fail to. 

The idea of the method was first conceived when conditions for optimal solutions of 

synthesis problems were investigated (Tikhonravov, 1982). This method was later successfully 

employed in solving various synthesis problems at normal and oblique light incidence, including 

special cases when it was necessary to obtain simultaneously the pre-set energy and phase 

properties of the coating. We will consider here the simplest version of the method designed for 

a synthesis of two-component multilayer coatings at the normal light incidence. Let us first 

discuss principal ideas necessary to create it. At the end of the section we will try to supply some 

mathematical explanations to the success of the employment of the method. 

 
2.1.1 Needle-like variations of the refractive index 
 

In order to introduce the principal ideas of the method, it is convenient to describe a 

multilayer coating by some distribution of the permittivity ( )zε  (see Section 1.1). We will 

consider that there is no absorption in the layers, so in equations of Section 1.1 2( ) ( )z n zε = ,  

where ( )n z  is a function describing a distribution of refractive index. Two-component coatings 

have piecewise continuous functions ( )n z  alternatively taking the values of Hn  and Ln . So far it 

is convenient to consider ( )n z  as an arbitrary piecewise continuous function. In order to 

determine the spectral characteristics of the coating, the admittance method can be used. With 
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the normal light incidence, the amplitude reflectance is expressed through the input admittance 

according to the formula 

( , )( ) ,
( , )

a a

a a

n A zr
n A z

λλ
λ

−
=

+
                                                 (2.2.1) 

where for coatings with arbitrary ( )n z  distribution admittance is obtained as a solution of the 

differential equation 

2 22 ( ) ( , )dA i n z A z
dz

π λ
λ

 = −                                               (2.2.2) 

with the initial condition 

(0, ) .sA nλ =                                                         (2.2.3) 

Remember that 0 is a coordinate of the boundary between the coating and the substrate, 

az  is a coordinate of the boundary with the outer space. Thus, az  is a total geometrical thickness 

of the coating. 

The reflectance is expressed according to 
2 *( ) ( ) ( ) ( ).R r r rλ λ λ λ= =                                           (2.2.4) 

It is evident from (2.2.1)-(2.2.4) that the values of the amplitude and the energy reflection 

coefficients are fully defined by the ( )n z  function, which, consequently, plays a role similar to 

that of the X  vector in the previous section. So, like in Section 2.1, it will be sensible to 

introduce designation [ ]( ),R n z λ  for energy reflection coefficient. Let us also introduce the merit 

function similar to (2.1.5): 

[ ] [ ]{ }2

1
( ) ( ), ( )

L

l l l
l

F n z R n z Rλ λ
=

= −∑ v .                                (2.2.5) 

Its value is non-ambiguously determined by the ( )n z  function. 

When solving synthesis problems, we actually match the ( )n z  function, so that the merit 

function (2.2.5) can be minimized. It certainly means that only some functions of the so-called 

permissible set are matched. For instance, when designing two-component coatings only 

piecewise continuous functions are considered taking alternately the values of Hn  and Ln . 

This view of the synthesis problems make them similar to the classical problems of the 

optimal control theory (Pontrjagin et al., 1976). The merit function (2.2.5) turns to be goal 

function of the optimal control theory, the ( )n z  refractive index distribution is similar to the 
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control function and the differential equation for admittance (2.2.2) is a sort of motion equation 

guided by ( )n z . Let us note, by the way, that the fruitfulness of the latter comparison was 

demonstrated in Section 1.2. At the same time, there are certain differences: equation (2.2.2) 

includes the spectral parameter λ , and the merit function is determined as the sum depending on 

the solutions of equation (2 .2 .2) for the various values of this parameter. 

Of special importance for us is a specific construction of the optimal control theory - the 

so-called needle-like variation of the control function. It is illustrated in Fig. 2.3. Let ( )n z  be 

some piecewise continuous distribution of the refractive index (a solid curve in the upper part of 

Fig. 2.3). Let us select some point ẑ  on [ ]0,  az  where function ( )n z  is continuous, and consider 

the small segment [ ]ˆ ˆ,  z z z+ ∆  on its right. Let us change the refractive index ( )n z  here, taking it 

equal to some value n̂ . This change of the refractive index is called a needle-like variation of the 

n(z) function at point ẑ . The origin of the name is evident from Fig 2.3. The ( )n z  variation 

takes the shape of a “needle” (hatched in Fig. 2.3): its width z∆  is small, according to the 

condition, while its height can be significant. 

Let us find out how the solution of the equation for the admittance changes when the 

needle-like variation of the refractive index ( )n z  at point ẑ  is done. Not to overcomplicate the 

explanation, let us not be overduly strict from the mathematical point of view. A strict 

substantiation of the following is similar to the proof of corresponding results in the optimal 

control theory. 

 
Figure 2.3: Needle-like variation of the refractive index and corresponding admittance variation 
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Let us designate as ( )n z  the function obtained as a result of the needle-like variation at 

point ẑ : 

[ ]
[ ]
ˆ ˆ( ),       ,  ,

( )
ˆ ˆ ˆ,            ,  .

n z z z z z
n z

n z z z z

 ∉ + ∆= 
∈ + ∆

  

Let ( , )A z λ  be a relevant solution of the equation for admittance: 

22 ( ) ( , ) ,dA i n z A z
dz

π λ
λ

 = − 




                                            (2.2.6) 

satisfying the same initial condition as before: 

(0, ) .sA nλ =  

Functions ( )n z  and ( )n z  are the same within the segment [ ]ˆ0,  z , so solutions of 

equations (2 .2 .2) and (2 .2 .6) coincide. Thus, ˆ ˆ( , ) ( , )A z A zλ λ= . Starting at point ẑ  these 

solutions diverge (see Fig. 2.3)5. Let us consider them first at the narrow segment[ ]ˆ ˆ,  z z z+ ∆ . 

The increments of ( , )A z λ nd ( , )A z λ  function within the segment will be determined to an 

accuracy of the first order with respect to z∆ . In this approximation the rates of changes of the 

solutions can be taken as constants and equal to their values at the left point of the segment. 

Keeping that in mind, we obtain from (2.2.2) and (2.2.6) that the solution increments within the 

segment [ ]ˆ ˆ,  az z z+  are equal to 

( ) ( )

( )

2 2

2 2

2 ˆ ˆ, ,

2 ˆ ˆ, .

A i n z A z z

A i n A z z

π λ
λ
π λ
λ

 ∆ = − ∆ 

 ∆ = − ∆ 


                                     (2.2.7) 

Here, we also took into account that ˆ ˆ( , ) ( , )A z A zλ λ= , and ( )n z  are equal to n̂  at the 

segment in question. Subtracting the first from the second equation in (2.2.7) we obtain that 

solutions of equations (2.2.2) and (2.2.6) will digress at ẑ z+ ∆  by the value of 

( )2 22 ˆ ˆA i n n z zπδ
λ

 = − ∆  .                                         (2.2.8) 

Within the next segment [ ]ˆ ,  az z z+ ∆  the ( )n z  and ( )n z  functions will coincide again, 

however the solutions for (2 .2 .2) and (2 .2 .6) will be different as they have different values at 

the initial point of segment ẑ z+ ∆ . Let us designate 

 
5Solution for (2.2.2) and (2.2.6) in Fig. 2.3 are simplified. In fact both these functions have complex values. 
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( , ) ( , ) ( , ).A z A z A zδ λ λ λ= −  

Function ( , )A zδ λ  is small, since the difference (2.2.8) between the initial conditions at 

point ẑ z+ ∆  is small. It comes from the theorem on continuous dependence of the differential 

equation solutions on the initial conditions. 

We will obtain a differential equation for the ( , )A zδ λ  function, its smallness taken into 

consideration. For this, let us assume ( , ) ( , ) ( , )A z A z A zλ λ δ λ= +  in (2.2.6) and subtract 

equation (2.2.2) from (2.2.6). Taking into account that within the segment in question ( )n z  and 

( )n z  functions coincide, and having neglected the square of ( , )A zδ λ  we will obtain 

( ) 4 ( , ) ( , ).
d A

i A z A z
dz
δ π λ δ λ

λ
= −                                          (2.2.9) 

It is a linear differential equation with respect to ( , )A zδ λ  function. Its initial condition is 

set in equation (2.2.8) at point ẑ z+ ∆ . Since the smallness order of the initial condition is z∆ , 

the whole solution of equation (2.2.9) has the same order of smallness. Further, it is convenient 

to hold that the initial condition was set at point ẑ  rather than at point ẑ z+ ∆ . In this case, the 

error introduced into the solution is proportional to 2z∆  and is not essential for further 

conclusions since from the very start all calculations are made with an accuracy to the first order 

of z∆ . So, the initial condition for equation (2.2.9) is put down as 

( ) ( )2 22 ˆˆ ˆ,A z i n n z zπδ λ
λ

 = − ∆  .                                         (2.2.10) 

Equation (2.2.9) with the initial condition (2.2.10) makes it possible to obtain a change in 

admittance when the needle-like variation of the refractive index is made at point ẑ . This 

solution can be written down with an explicit formula containing function ( , )A z λ  under the 

symbol of integral. However, we will have no need of this form of presentation. So far, the 

following is of importance: a change of admittance can be, in principle, found at any point up to 

the outer boundary az z= . 

 
2.2.2 The principal idea of the method 
 

With the needle-like variation of the refractive index the input admittance changes and 

the reflectance and the merit function changes, too. 
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As was mentioned earlier, equation (2.2.9) with the initial condition (2.2.10) enables in 

principle to find the admittance change at point az . So let us express the merit function (2.2.5) 

variation with the help of ( , )aA zδ λ . For this purpose, let us first write out the variations of the 

amplitude and the energy reflection coefficients. From (2.2.1) we obtain that with the change of 

the input admittance by the value of ( , )aA zδ λ , the amplitude reflection coefficient gets an 

increment of 

[ ] ( )
21 ( )

( ) , .
2 a

a

r
r A z

n
λ

δ λ δ λ
+

= −                                      (2.2.11) 

It follows from (2.2.4) and (2.2.11), that 

{ } [ ]{ }2* *1( ) 2Re ( ) ( ) Re ( ) 1 ( ) ( , ) .a
a

R r r r r A z
n

δ λ λ δ λ λ λ δ λ= = − +           (2.2.12) 

The merit function change with (2.2.12) taken account of is equal to 

( ) ( ) ( ) ( ) ( ) [ ] ( ){ }2*

1 1

22 Re ( ) 1 ( ) , .
L L

l l l l l l l a
l la

F R R R R R r r A z
n

δ λ λ δ λ λ λ λ λ δ λ
= =

   = − = − − × +   ∑ ∑ v v

  (2.2.13) 

To shorten the record, we do not specify here or later an evident dependence on ( )n z . It 

is quite clear from the above what kind of values depend on the distribution of the refractive 

index. 

Let us transform (2.2.13) into a more convenient expression for further use. Let us 

introduce the so-called conjugate equation for the purpose: 

4 ( , ) ( , ).d i A z z
dz

π λ λ
λ

Ψ
= Ψ                                             (2.2.14) 

This is a linear differential equation with respect to functionΨ . It is complex like (2.2.2), 

(2.2.6) and (2.2.9). The solution of equation (2.2.2) for admittance is its coefficient. The right 

part of equation (2.2.14) also contains the spectral parameter λ . Similar to the admittance, we 

designate here the dependence of the Ψ  function on this parameter. We will refer to the 

( , )z λΨ ) function as a conjugate one. 

Let us set L  times the boundary condition at point az  for equation (2.2.14): 

( ) ( ) ( ) ( ) 2*2( , ) 1 .a l l l l l l
a

z R R r r
n

λ λ λ λ λ Ψ = − +   
v                       (2.2.15) 

Now the expression (2.2.13) can be rewritten with the help of (2.2.15) as 
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( ) ( ){ }
1

Re , , .
L

a l a l
l

F z A zδ λ δ λ
=

= − Ψ∑                                 (2.2.16) 

Let us consider the product of ( ) ( ), ,a l a lz A zλ δ λΨ at arbitrary z  from segment [ ]ˆ,  az z . 

Differentiating it with respect to z  and taking account of (2.2.9) and (2.2.14), we obtain that 

( ) ( ), , 0.d z A z
dz

λ δ λΨ =    

Thus, the product does not depend on z . So 

( ) ( ) ( ) ( )ˆ ˆ, , , ,a l a l l lz A z z A zλ δ λ λ δ λΨ = Ψ . 

Substituting ẑ  for az  in (2.2.16) and taking into account the initial condition (2 .2 .10), 

we finally obtain that, 

( ){ } ( )2 2

1

1 ˆˆ ˆ2 Im , .
L

l
l l

F z n n z zδ π λ
λ=

 = Ψ − ∆ ∑                                 (2.2.17) 

Let us introduce another designation 

( ){ }
1

1( ) 2 Im , .
L

l
l l

P z zπ λ
λ=

= Ψ∑                                         (2.2.18) 

Then (2.2.17) can be put down as 

( ) ( )2 2ˆˆ ˆ .F P z n n z zδ  = − ∆                                       (2.2.19) 

This is the final expression for the value of the merit function change sought for. It 

underlies the method of synthesis in question. Let us make another important remark before we, 

at last, proceed with the explanation of the method itself. The ( )P z  function introduced in 

(2.2.18) is in no way dependent on the needle-like variation of the refractive index. It is only 

determined by the ( )n z  function. Indeed, in order to calculate it for the ( )n z  arbitrary 

dependence, it is necessary first to provide L  times a numerical solution of equation (2.2.2) for 

different values of λ  and then to integrate numerically L  times in the reverse direction the 

conjugate equation (2.2.14) with the initial conditions (2.2.15). Solutions of the equation (2.2.2) 

and equation (2.2.14) depend only on ( )n z . 
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Figure 2.4: Needle-like variation causing the decrease of the merit function 

 

The idea of the method will be discussed as applicable to the synthesis of two-component 

coatings. By this we will further consider ( )n z  functions taking two values of Hn  and Ln . One 

of these functions, corresponding to a three-layer coating, is presented in Fig. 2.4. As we have 

just remarked, ( )n z  defines unambiguously the ( )P z  function, set by equation (2.2.18). We will 

show below that the ( )P z  function is determined in a very simple way with the help of recurrent 

formulas. Suppose now, the function has already been calculated and is presented in Fig. 2.4. We 

will consider the needle-like variations of H Ln n n∆ = −  high. And we will hold that at points 

where ( ) Ln z n=  they may be effected only upwards, and at points where ( ) Hn z n=  only 

downwards. Let us call such needle-like variations permissible, since when they occur, the 

coating corresponding to the new ( )n z  distribution remains two-component. Let us note that a 

permissible variation made at the boundary of the layers is equivalent to an increase in the 

thickness of one layer and a decrease in the thickness of the other one. If a permissible variation 

occurs at some interior point of a layer, it is equivalent to a change of this layer into three new 

ones, with the middle layer having the refractive index different from the initial one (See Fig. 

2.4). 

Expression (2.2.19) makes it possible to determine the merit function change at any point 

[ ]ˆ 0, az z∈ . In expression (2.2.19) ˆ Hn n= , if ˆ( ) Ln z n=  and ˆ Ln n= , if ˆ( ) Hn z n=  by the definition 
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of permissible variation. At sufficiently small z∆  this variation will necessitate the merit 

function decrease, if ˆ( ) Ln z n= , and ˆ( ) 0P z <  at the same time, or if simultaneously ˆ( ) Hn z n=  

and ˆ( ) 0P z > . We mention a sufficiently small width here because the accuracy of (2.2.19) 

increases as z∆  decreases. With a large width of a needle-like variation, higher order terms of 

(2.2.19), not taken into account, reveal themselves more visually and the final expression may 

turn wrong. As we see, knowledge of the ( )P z  function enables implementing the merit function 

minimization by carrying out permissible needle-like variation of the refractive index. It is 

evident that the variations are most efficient at points where modulus of the ( )P z  function is 

maximal. This is the principal idea of the method. We will consider one of the versions of the 

method in greater detail below. Now, to ensure a more profound assessment of the considerations 

above, let us investigate its relation to the gradient methods of the merit function optimization. 

In the process of optimization by gradient methods a successive change of the layer 

thicknesses by small steps occurs. Such changes are evidently equivalent to a series of needle-

like variations of the refractive index at the boundaries of the layers. As we said earlier, the 

reverse relation is valid, too. So, the decrease of the merit function due to needle-like variations 

at the layer boundaries is to a certain degree similar to optimization by the gradient methods. It 

leads to an idea that the information used in these methods is somehow present in the ( )P z  

function. It really turns out to be so. We may prove that the merit function derivatives with 

respect to the layer thicknesses are expressed through the values of ( )P z  at the boundaries of the 

layers. 

But the ( )P z  function contains more information than the one used by the gradient 

methods. Let us explain it in more details. Let a coating be found in the process of the merit 

function optimization. Then the ( )P z  function values at the boundaries of the layers must be 

close to zero. Otherwise, due to small changes of the layer thicknesses through corresponding 

needle-like variations, the merit function can be significantly decreased. But this runs counter to 

the fact that the obtained design causes the minimum. Small differences of ( )P z  from the zero at 

the layer boundaries are certainly possible because minima are always found with a definite 

degree of accuracy. However, the proximity of the ( )P z  to zero near the layer boundaries does 

not at all mean that the function is small everywhere along [ ]0,  az . There may be zones inside 

the layers where modulus of the ( )P z  function is sufficiently big, and permissible needlelike 
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variations cause significant decrease of the merit function (see above). This situation is 

illustrated in Fig. 2.4. 

In each case of the inner needle-like variation the number of layers increases by two. If a 

two-component coating is mathematically described by a vector of the layer thicknesses (as in 

Section 2.1), the increase of the number of layers means a transition to the space of another, 

larger dimension. So, it turns, that the ( )P z  function also contains information on how to 

decrease the merit function due to an increase of the sought for vector dimension. Let us note 

that all the standard optimization methods always operate in the space of a fixed dimension. 

 
2.2.3 Description of the method 
 

We will consider the simplest version of the method which was suggested by Baskakov 

and Tikhonravov (1984). It consists of 3 major components: 1-the merit function optimization by 

the gradient methods; 2-the ( )P z  function calculation and the needle-like variations block; 3-

projection of the layer thicknesses vector on spaces of smaller dimension. Let us now look upon 

each one separately, concentrating on their goals and relations. 

The first component is a program of the merit function optimization described in the 

previous section. The outcome of its work is an m -dimension vector, whose coordinates are the 

layer thicknesses of a two-component coating. 

The second component program is the principal one in the method under investigation. It 

operates as follows. The 1m -dimension vector 1X  describing the layer thicknesses of some 

coating is fed at the input of the program. It can either be a vector obtained as a result of 

optimization with the preset starting design 0X , or the vector selected from the series of the local 

minima for the randomly set starting designs (see Section 2.1), or some arbitrary vector. The 

( )P z  function corresponding to the ( )n z  distribution described by vector 1X  is calculated here. 

The ( )P z  calculation algorithm will be considered in details below after we describe and 

investigate the method as a whole. Then a point is determined where the needle-like variation 

leads to a most effective decrease of the merit function (see above). At this point a permissible 

needle-like variation of the width that actually decreases the merit function is effected (at large 

values of z∆  there may be no decrease, as was discussed earlier). For the simplest case, the z∆  

selection is effected in the following way. A certain initial width of the needle (about 10 nm for 
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the synthesis in the visible band of the spectrum) is set as an input parameter of the method. If it 

turns to be too large, a successive decrease of z∆  occurs to ensure the needle-like variation 

bringing about the merit function decrease. Then, the ( )P z  function is calculated again and the 

most favorable point of variation is determined and another permissible needle-like variation is 

effected resulting in the new decrease of the merit function. This process is reiterated M  times, 

where M  is an input parameter of the method set at the beginning of the calculations (parameter 

M  is usually taken as equal to 3-5). 

As a result of a series of needle-like variations, at the output of the second component 

program 2X  vector is obtained of the 2 1m m≥  dimension (the dimension may not necessarily 

increase, if all the variations were effected at the boundary points). An obligatory condition 

2 1( ) ( )F X F X<  is observed. 

The vector 2X  is fed as the starting design for optimization into the first program. The 

program effects the optimization, the non-negative layer thicknesses taken into account. Many 

coordinates of the 2X  vector are small. So, as a rule a number of coordinates of the vector 

obtained in the process of optimization become equal to zero. Let us denote the vector obtained 

as 3X  and its dimension as ( )3 3 2m m m≤ . The value of the merit function further decreases in 

the process of optimization: 3 2( ) ( )F X F X< . 

One of the major obstacles for a good implementability of the results of the synthesis can 

reveal itself in a great number of the coating layers. Despite the fact that 3 2m m<  as a rule, the 

3X  vector can still be of a too large dimension. So, it turned out to be worthwhile to introduce 

another component of the method decreasing the dimension. It will simply operate proceeding 

from the fact that all the coordinates of vector 3X  having values smaller than certain mind  

(which is another input parameter of the method) are believed to be equal to zero. If the 

coordinate of the inner layer of the coating is taken as equal to zero, the adjacent layers merge 

into one and the vector dimension decreases by 2. As a result, vector 4X  is obtained at the output 

of the third component, the vector dimensions being 4 3m m≤ . The value of ( )4F X  is most 

likely greater than ( )3F X . However, this increase of the merit function can be compensated at 

least partly by the successive optimization with the first component program. After such an 
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optimization we obtain vector 5X  where 5 4( ) ( )F X F X< . The dimension of the 5X  vector can 

further decrease due to the limitations taken account of. 

The complete cycle of the method terminates on obtaining vector 5X . Then vector 5X  

can either be fed into the input of the second program to search for the solution according to the 

above pattern. It may also be presented as the final result of the synthesis. It is very often 

sufficient for a good result to complete one cycle. The supplied description makes it clear that 

the method is especially worthwhile in an interactive regime with a possibility of an intellectual 

impact at every stage (correcting the parameters of the method, solving the question concerning 

the necessity of a further search, etc.). Note also that one complete cycle of the method takes as a 

rule a few minutes of calculations on computers. 

Before we consider an example of synthesis, let us write down the algorithm of the ( )P z  

function calculation being the basis of the method. According to the above considerations, first 

we ought to solve the differential equation for admittance L  times with 1,  ... ,  Lλ λ λ= . Note, 

that we are now interested not only in the input admittance, necessary to calculate the 

reflectance, but to ensure the whole of the solution of equation (2 .2 .2) on [ ]0,  az , since it is 

incorporated in the conjugate equation (2.2.14) as a coefficient. This solution was in fact 

obtained for the case of a piecewise-constant dependence of ( )n z  in Section 1.2. Making use of 

(1.2.20) we can write it down for any layer of the coating. In the j -th layer, i.e., on the 1,j jz z−    

segment admittance looks like 

( )
( )

1

1

1

sin ( , ) cos
( , ) ,

cos ( , )sin

2 .

j j

j j

j j

in A z
A z

i n A z

n z z

ϕ λ ϕ
λ

ϕ λ ϕ

πϕ
λ

−

−

−

+
=

+

= −

                                  (2.2.20) 

Here 1( , )jA z λ− is the value of admittance at the left boundary of the layer. Refractive 

index jn  takes the values of Hn  and Ln  depending on the order of sequence of layers with high 

and low refractive indices. Solution of equation (2 .2 .2) is obtained with the help of (2 .2 .20) 

subsequently from layer to layer, taking account of the initial condition at 0 0z = : 

( )0 , .sA z nλ =  

Now we will obtain a common formula for the solution of a conjugate equation (2.2.14) 

in the j -th layer. It is necessary for the purpose to substitute the explicit expression for ( ),A z λ  
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into (2.2.14). Note that if we additionally multiply the numerator in (2.2.20) by ( )2i π λ  it will 

coincide with the denominator derivative of the expression. So equation (2.2.14) can be written 

down in the following form: 

( ) ( )1
1 1

( , )2 22 ln cos sin ( , ).j
j j j j

j

A zd d n z z i n z z z
dz dz n

λπ π λ
λ λ

−
− −

 Ψ     = − + − Ψ         
 

Dividing it by the ( , )z λΨ ) function and integrating with respect to dz , we obtain a 

common expression for the conjugate function in the j -th layer: 

( ) ( )
2

1
1 1

( , )2 2( , ) cos sin .j
j j j j

j

A z
z C n z z i n z z

n
λπ πλ

λ λ
−

− −

     Ψ = − + −         
       (2.2.21) 

The boundary conditions (2.2.15) for the conjugate function are set at the right boundary 

of the last, m -th layer m az z= . So the solution of the conjugate equation ought to be effected 

from the right leftward. Due to this, the indefinite constant C  in (2 .2 .21) ought to be determined 

at the right boundary point of the j -th layer. As a result we obtain the following expression for 

calculating the conjugate function in the j -th layer 

2

1

1

cos ( , )sin
( , ) ( , ) .

2 2cos ( , )sin

j
j

j

j j j j j
j

i A z
n

z z
in d A z n d

n

ϕ λ ϕ
λ λ

π πλ
λ λ

−

−

 
+  Ψ = Ψ  

    +        

       (2.2.22) 

Here ( )1
2

j jn z zπϕ
λ −= − and jd  is the thickness of the j-th layer. 
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Figure 2.5: Reflectance of the 8-layer antireflection coating: 

8S .295H .291L .149H .074L 1.915H .107L .311H 1.052L  

with ( )01.52,  2.30,  1.38  500 s H Ln n n nmλ= = = =  

 

With the help of (2.2.22) for 1,  ... ,  Lλ λ λ=  from layer to layer the ( , )lz λΨ function is 

calculated. This done, there are no obstacles to finding ( )P z  from (2.2.18). Note, that it is 

sufficient to store in the computer memory only the values of the admittance at the layers 

boundaries in order to determine the ( , )lz λΨ  functions. As we can see, the algorithm of the 

( )P z  function calculation is very economical both with respect to the calculation time and the 

volume of information stored in the computer memory. 

Let us now consider an example of synthesis described by Baskakov and Tikhonravov 

(1984). An antireflection coating was designed for the visible spectral band on the basis of 

materials with the refractive indices of 2.30,  1.38H Ln n= =  with glass featuring 1.52sn =  as 

the substrate and air as the outer space. The layer adjacent to the substrate had a high refractive 

index. 

The synthesis process started with a search for a two-layer antireflection coating with a 

random setting of the starting design. The time of the search was limited to 5 minutes. The 1X  

vector selected within this time and implementing the deepest local minimum was fed at the 

input of the second program. Then the synthesis process continued along the pattern described 

above. The calculations were made within one complete cycle of the method. The reflectance of 

the synthesized coating is provided in Fig 2.5. The geometric thicknesses of the layers in 
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nanometers (starting from the substrate) are equal to 14.1, 26.4, 8.1, 6.7, 104.1, 9.7, 16.9, 95.3. 

The optical thicknesses of the layers are equal to 32.4, 36.4, 18.6, 9.3, 239.4, 13.4, 38.9,131.5. 

The total search time was about 10 minutes on the BESM-6  mainframe. 
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